The use of plant to meet health-care needs has greatly increased worldwide in the recent times. The search for new plant-derived bioactive agents that can be explored for the treatment of drug-resistant malaria infection is urgently needed. Thus, we evaluated the antimalarial activity of three medicinal plants used in Nigerian folklore for the treatment of malaria infection. A modified Peter’s 4-day suppressive test was used to evaluate the antimalarial activity of the plant extracts in a mouse model of chloroquine-resistant Plasmodium berghei ANKA strain. Animals were treated with 250, 500, or 800 mg/kg of aqueous extract. It was observed that of all the three plants studied, Markhamia tomentosa showed the highest chemosuppression of parasites of 73 % followed by Polyalthia longifolia (53 %) at day 4. All the doses tested were well tolerated. Percentage suppression of parasite growth on day 4 post-infection ranged from 1 to 73 % in mice infected with P. berghei and treated with extracts when compared with chloroquine diphosphate, the standard reference drug which had a chemosuppression of 90 %. The percentage survival of mice that received extract ranged from 0 to 60 % (increased as the dose increases to 800 mg/kg). Phytochemical analysis revealed the presence of tannins, saponins, and phenolic compounds in all the three plants tested.
Exposure to outside air microorganisms especially fungi has been linked with illness such as allergic respiratory symptoms, rhinitis, asthma, and infection such as mycosis. Airborne fungal composition was sampled from five locations in Lagos State, Nigeria, between May 2014 and April 2016. Fungi spores were collected using the sedimentation plate method with the Petri dishes of dichloran-glycerol 18 (DG-18) and potato dextrose agar (PDA) media. Fungi sporulated faster on DG-18 agar plate as compared with PDA. The abundances of fungal spores collected monthly at the locations varied. The most abundant spores came from the fungi were Aspergillus niger (14.47%), Aspergillus sydowii (10.37%), and Aspergillus flavus (7.93%). Additional species were present in the collections including Ascomycetes: Penicillium funiculosum (5.49%), Neurospora crassa (5.32%), Penicillium oxalicum (4.71%), Penicillium pinophilum (2.88%), Fusarium verticillioides (3.05%), Penicillium simplicissimum (1.83%), Aphaderanum sp. (0.22%), Curvularia sp. (0.22%), Aspergillus oryzae (0.22%), and Paecilomyces sp. (0.61%) and the Mucoromycotina Zygomycetes: Rhizopus oryzae (4.10%) and Mucor sp. (3.44%). Fungal concentrations were significantly higher (P ≤ 0.05) during the rainy season compared with the dry season. Aspergillus and Penicillium were the most predominant airborne fungal genera while Mucor, Alternaria, and Cladosporium were some of the least observed. Generally, abundance of fungi was significantly high during the wet season in all the studied locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.