We identified a novel cDNA (IG20) that is homologous to cDNAs encoding a protein differentially expressed in normal and neoplastic cells (DENN-SV) and human MADD (MAPK-activating death domain-containing protein). Furthermore, we show that the above variants most likely result from alternative splicing of a single gene. Functional analyses of these variants in permanently transfected HeLa cells revealed that IG20 and DENN-SV render them more susceptible or resistant to tumor necrosis factor ␣ (TNF-␣)-induced apoptosis, respectively. All variants tested could interact with TNF receptor 1 and activate ERK and nuclear factor B. However, relative to control cells, only cells expressing IG20 showed enhanced TNF-␣-induced activation of caspase-8 and -3, whereas cells expressing DENN-SV showed either reduced or no caspase activation. Transfection of these cells with a cDNA encoding CrmA maximally inhibited apoptosis in HeLa-IG20 cells. Our results show that IG20 can promote TNF-␣-induced apoptosis and activation of caspase-8 and -3 and suggest that it may play a novel role in the regulation of the pleiotropic effects of TNF-␣ through alternative splicing.
We identified seven putative splice variants of the human IG20 gene. Four variants namely, IG20, MADD, IG20-SV2 and DENN-SV are expressed in human tissues. While DENN-SV is constitutively expressed in all tissues, expression of IG20 appears to be regulated. Interestingly, overexpression of DENN-SV enhanced cell replication and resistance to treatments with TNFa, vinblastine, etoposide and c-radiation. In contrast, IG20 expression suppressed cell replication and increased susceptibility to the above treatments. Moreover, cells that were resistant and susceptible to TNFa-induced apoptosis exclusively expressed endogenous DENN-SV and IG20, respectively. When PA-1 ovarian cancer cells that are devoid of endogenous IG20 variant, but express higher levels of DENN-SV, were transfected with IG20, they showed reduced cell proliferation and increased susceptibility to apoptosis induced by TNFa, TRAIL and c-radiation. This indicated that overexpression of IG20 can override endogenous DENN-SV function. CrmA reversed the effects of IG20, but not DENN-SV. In contrast, dominant-negative-I-kappa B reversed the effects of DENN-SV, but not IG20, and showed that DENN-SV most likely exerted its effects through NFjB activation. Together, our data show that IG20 gene can play a novel and significant role in regulating cell proliferation, survival and death through alternative mRNA splicing.
Currently, there is a lack of effective therapeutic methods to restore neurological function for chronic complete spinal cord injury (SCI) by conventional treatment. Neurorestorative strategies with positive preclinical results have been translated to the clinic, and some patients have gotten benefits and their quality of life has improved. These strategies include cell therapy, neurostimulation or neuromodulation, neuroprosthesis, neurotization or nerve bridging, and neurorehabilitation. The aim of this consensus by 31 experts from 20 countries is to show the objective evidence of clinical neurorestoration for chronic complete SCI by the mentioned neurorestorative strategies. Complete chronic SCI patients are no longer told, "nothing can be done." The clinical translation of more effective preclinical neurorestorative strategies should be encouraged as fast as possible in order to benefit patients with incurable CNS diseases. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.
This study is aimed at describing a novel method for treating patients with chronic complete spinal cord injuries (SCIs) by utilizing autologous, purified CD34 + and CD133 + stem cells (SCs). The study focuses on the safety and efficacy of transplanting unmanipulated, autologous, purified stem cells in treated patients during a 5-year follow-up period. In this report, 19 patients were included (16 males and 3 females) who presented with a complete SCI (ASIA-A) in the thoracic region. The patients' endogenous cells were mobilized with subcutaneous granulocyte-colony-stimulating factor (G-CSF) for 5 days. We utilized the CliniMACS magnetic separation system to purify leukapheresis-derived CD34 + and CD133 + SCs. Purified SCs were directly transplanted into the SCI site. Patients were then monitored and followed for up to 5 years. On average, 76 × 10 6 purified SCs were obtained from each patient, with 95.2% purity and >98% viability. SC transplantation into the cyst cavity or the subarachnoid space was successful and well tolerated in all 19 patients and did not cause any allergic or inflammatory reactions within the CNS in the early or late periods after transplantation. Ten patients (53%) showed no improvement after 42-60 months (ASIA-A), while seven patients (37%) demonstrated segmental sensory improvement (ASIA-B), and the remaining two patients (10%) had motor improvement (ASIA-C). This study presents a safe method for transplanting specific populations of purified autologous SCs that can be used to treat SCIs in a clinical setting. The results may be utilized as a stepping-stone for future investigations in the field of regenerative medicine for treatment of SCIs and other neurological diseases. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.
Cell therapy has been shown to be a key clinical therapeutic option for central nervous system diseases or damage. Standardization of clinical cell therapy procedures is an important task for professional associations devoted to cell therapy. The Chinese Branch of the International Association of Neurorestoratology (IANR) completed the first set of guidelines governing the clinical application of neurorestoration in 2011. The IANR and the Chinese Association of Neurorestoratology (CANR) collaborated to propose the current version “Clinical Cell Therapy Guidelines for Neurorestoration (IANR/CANR 2017)”. The IANR council board members and CANR committee members approved this proposal on September 1, 2016, and recommend it to clinical practitioners of cellular therapy. These guidelines include items of cell type nomenclature, cell quality control, minimal suggested cell doses, patient-informed consent, indications for undergoing cell therapy, contraindications for undergoing cell therapy, documentation of procedure and therapy, safety evaluation, efficacy evaluation, policy of repeated treatments, do not charge patients for unproven therapies, basic principles of cell therapy, and publishing responsibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.