Landfills and open dumping sites around the world are adding to the global warming issue. This is because of the existence of the main greenhouse gases in landfill gas (LFG); namely, methane (CH 4 ) and carbon dioxide (CO 2 ). The current study was focused on the determination of air emissions from the Muhammad wala dump site. This site was constructed in 1992 and expected to have lifespan of 28 years. Utilizing LandGEM software, the landfill emissions were estimated with taking into consideration the 60% content of methane, the methane generation rate constant of 0.02125 year
Greenhouse farmers often use thermal screens to reduce greenhouse heating expenses during the winter, and for shade during hot, sunny days in the summer, as it is an inexpensive solution to temperature control relative to other available options. However, accurate measurements of their emitted and absorbed radiations are important for the selection of suitable screens that offer maximum performance. Material's ability to save energy is highly dependent on these properties. Limited studies have investigated the measurement of these properties under natural conditions, but they are only applicable to materials having partial porosities. In this work, we describe a new radiation balance method for determining emissive power and absorptive capacity, as well as reflectivity, transmissivity and emissivity of materials having complete and partial transparency by using pyrgeometer and net radiometer. In this study, four materials with zero porosity, were tested. The emissivity value of PE, LD-13, LD-15 and PH-20 was 0.439±0.020, 0.460±0.010, 0.454±0.004, and 0.499±0.006, respectively. All tested samples showed high emitted radiation as compared to absorbed radiation.
Light intensity, temperature, and humidity are key factors affecting photosynthesis, respiration, and transpiration. Among these factors, temperature is a crucial parameter to establish an optimal greenhouse climate. Temperature can be controlled by using an appropriate climate screen, which has a considerable impact on crop quantity and quality. The precise measurements of longwave radiative properties of screens are vital to the selection of the most suitable screen for greenhouses so that the desired temperature and a favorable environment can be provided to plants during nighttime. The energy-saving capability of screens can also be calculated by using these properties as inputs in a physical model. Two approaches have been reported so far in the literature for the measurement of these properties, i.e., spectrophotometry and wideband radiometry. In this study, we proposed some modified radiation balance methods for determining the total hemispherical longwave radiative properties of different screens by using wide-band radiometers. The proposed method is applicable to materials having zero porosity, partial opacity, and asymmetric screens with 100% solidity. These materials were not studied previously under natural conditions. The existing and proposed methods were applied and compared, and it was found that the radiometric values obtained from the developed methodology were similar to those previously reported in the literature, whereas the existing method gave unstable results with zero reflectance.
Convective heat transfer is the main component of greenhouse energy loss because the energy loss by this mechanism is greater than those of the other two components (radiative and conductive). Previous studies have examined the convective heat transfer coefficients under natural conditions, but they are not applicable to symmetric thermal screens with zero porosity, and such screens are largely produced and used in Korea. However, the properties of these materials have not been reported in the literature, which causes selectivity issues for users. Therefore, in this study, three screens having similar color and zero porosity were selected, and a mathematical procedure based on radiation balance equations was developed to determine their convective heat transfer coefficients. To conduct the experiment, a hollow wooden structure was built and the thermal screen was tacked over this frame; the theoretical model was applied underneath and over the screen. Input parameters included three components: 1) solar and thermal fluxes; 2) temperature of the screen, black cloth, and ambient air; and 3) wind velocity. The convective heat transfer coefficients were determined as functions of the air-screen temperature difference under open-air environmental conditions. It was observed from the outcomes that the heat transfer coefficients decreased with the increase of the air-screen temperature difference provided that the wind velocity was nearly zero.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.