Heat shock protein 90 (Hsp90) is a molecular chaperone that plays a key role in the conformational maturation of oncogenic signalling proteins, including HER-2/ErbB2, Akt, Raf-1, Bcr-Abl and mutated p53. Hsp90 inhibitors bind to Hsp90, and induce the proteasomal degradation of Hsp90 client proteins. Although Hsp90 is highly expressed in most cells, Hsp90 inhibitors selectively kill cancer cells compared to normal cells, and the Hsp90 inhibitor 17-allylaminogeldanamycin (17-AAG) is currently in phase I clinical trials. However, the molecular basis of the tumour selectivity of Hsp90 inhibitors is unknown. Here we report that Hsp90 derived from tumour cells has a 100-fold higher binding affinity for 17-AAG than does Hsp90 from normal cells. Tumour Hsp90 is present entirely in multi-chaperone complexes with high ATPase activity, whereas Hsp90 from normal tissues is in a latent, uncomplexed state. In vitro reconstitution of chaperone complexes with Hsp90 resulted in increased binding affinity to 17-AAG, and increased ATPase activity. These results suggest that tumour cells contain Hsp90 complexes in an activated, high-affinity conformation that facilitates malignant progression, and that may represent a unique target for cancer therapeutics.
A primary pathologic component of Alzheimer's disease (AD) is the formation of neurofibrillary tangles composed of hyperphosphorylated tau (p-tau). Expediting the removal of these p-tau species may be a relevant therapeutic strategy. Here we report that inhibition of Hsp90 led to decreases in p-tau levels independent of heat shock factor 1 (HSF1) activation. A critical mediator of this mechanism was carboxy terminus of Hsp70-interacting protein (CHIP), a tau ubiquitin ligase. Cochaperones were also involved in Hsp90-mediated removal of p-tau, while those of the mature Hsp90 refolding complex prevented this effect. This is the first demonstration to our knowledge that blockade of the refolding pathway promotes p-tau turnover through degradation. We also show that peripheral administration of a novel Hsp90 inhibitor promoted selective decreases in p-tau species in a mouse model of tauopathy, further suggesting a central role for the Hsp90 complex in the pathogenesis of tauopathies. When taken in the context of known high-affinity Hsp90 complexes in affected regions of the AD brain, these data implicate a central role for Hsp90 in the development of AD and other tauopathies and may provide a rationale for the development of novel Hsp90-based therapeutic strategies.
Proteolytic processing of amyloid precursor protein (APP) generates amyloid-beta peptide and has been implicated in the pathogenesis of Alzheimer's disease. However, the normal function of APP, whether this function is related to the proteolytic processing of APP, and where this processing takes place in neurons in vivo remain unknown. We have previously shown that the axonal transport of APP in neurons is mediated by the direct binding of APP to the kinesin light chain subunit of kinesin-I, a microtubule motor protein. Here we identify an axonal membrane compartment that contains APP, beta-secretase and presenilin-1. The fast anterograde axonal transport of this compartment is mediated by APP and kinesin-I. Proteolytic processing of APP can occur in the compartment in vitro and in vivo in axons. This proteolysis generates amyloid-beta and a carboxy-terminal fragment of APP, and liberates kinesin-I from the membrane. These results suggest that APP functions as a kinesin-I membrane receptor, mediating the axonal transport of beta-secretase and presenilin-1, and that processing of APP to amyloid-beta by secretases can occur in an axonal membrane compartment transported by kinesin-I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.