The physicochemical and technofunctional properties and antioxidant capacity of freeze-dried “Wonderful” pomegranate juice powder (PJP), produced with different carrier agents, were investigated. Powders were produced using maltodextrin, gum Arabic, and waxy starch as carrier agents and characterised by scanning electron microscopy (SEM) and particle size distribution. Results showed that PJP produced with maltodextrin had the highest yield (46.6%), followed by gum arabic (40.6%), while waxy starch had the least yield (35.4%). Powders produced with maltodextrin (96.5%) and gum arabic (96.1%) were highly soluble, which indicates better reconstitution properties. Waxy starch-added PJP had the lowest hygroscopicity (4.7%), which offers good stability during storage and a lower degree of caking compared to maltodextrin (10.2%) and gum arabic (12.6%) powders. Powders obtained from maltodextrin and gum arabic exhibited larger particle diameters ranging between 12 to 120 µm while the lowest particle diameter range was with powders formed from waxy starch (8–40 µm). Freeze-dried pomegranate powder produced with maltodextrin retained more redness (a*) by approximately 44%, compared to gum arabic. Similarly, PJP with maltodextrin and gum arabic had higher total soluble solids (10.3 and 10.4 °Brix), respectively. Total anthocyanin content was 54% more in PJP with maltodextrin than waxy starch PJP. Similarly, the powder produced with maltodextrin had higher radical scavenging activity (33.19 mM TE/g dry matter; DM) compared to gum arabic (28.45 mM TE/g DM) and waxy starch (26.96 mM TE/g DM). Overall, maltodextrin reflected the most suitable carrier agent to produce PJP.
Blanch-assisted hot-air drying of pomegranate arils with blanching treatments 90 °C for 30 s, 100 °C for 60 s, and unblanched (control) arils were investigated. Effects of blanching on enzyme inactivation (polyphenol oxidase and peroxidse), colour, texture, and other qualities of dried arils were discussed. The hot-air drying conditions were 60 °C, 19.6% relative humidity, and 1.0 m s−1 air velocity. Results showed that blanching reduced enzyme activity by 76% and 68% for blanched arils treated at 90 °C for 30 s and 100 °C for 60 s, respectively, compared to unblanched arils. With regard to the total colour difference (TCD), unblanched arils were 20.9% and 16.6% higher than blanched arils treated at 90 °C for 30 s and 100 °C for 60 s, respectively. Furthermore, the total soluble solids (TSS) for unblanched aril increased significantly from 16.1 to 24.9 °Brix after drying, followed by arils treated at 90 °C for 30 s and 100 °C for 60 s (21.4; 18.5 °Brix), respectively. Among the blanching treatments, dried arils treated at 90 °C for 30 s had the highest total anthocyanin content (28.6 mg C3gE/g DM), followed by 100 °C for 60 s (24.8 mg C3gE/g DM). Similarly, dried arils treated at 90 °C for 30 s had the highest radical scavenging activity (RSA) (32.1 mM TE/g DM) while the least was observed with unblanched arils (17.0 mM TE/g DM). Overall, the blanching treatment was more effective to maintain the quality attributes of pomegranate dried arils.
This study investigated the effect of hot-air and freeze-drying on the physicochemical, phytochemical and antioxidant capacity of dried pomegranate arils during long-term cold storage (7 ± 0.3 °C, with 92 ± 3% relative humidity) of whole fruit over a single experiment. Extracted arils were processed at monthly intervals during 12 weeks of cold storage of whole fruit. After the 12-week storage period, hot-air and freeze-dried arils showed the least (3.02) and highest (23.6) total colour difference (TCD), respectively. Hot-air dried arils also contained 46% more total soluble solids (TSS) than freeze-dried arils. During the storage of pomegranate fruit, total phenolic content (TPC) steadily increased from 20.9 to 23.9 mg GAE/100 mL and total anthocyanin content (TAC) increased from 6.91 to 8.77 mg C3gE /100 mL. Similarly, an increase in TPC and TAC were observed for hot-air (9.3%; 13%) and freeze-dried arils (5%; 5%), respectively. However, the radical scavenging activity (RSA) reduced by 8.5 and 17.4% for hot-air and freeze-dried arils, respectively, after 12 weeks of cold storage. Overall, the parameters such as colour, TPC and TAC as well as the lower degradation in RSA stability during storage showed distinct differences in quality when using the freeze-drying method, which is, therefore, recommended.
The effect of blanching conditions on the hot-air drying kinetics of three pomegranates (cvs. “Acco”, “Herskawitz” and “Wonderful”) were assessed. Water blanching conditions considered were 90 °C for 30 s, 90 °C for 60 s, 100 °C for 30 s and 100 °C for 60 s. The drying experiments were carried out at 60 °C, 19.6% relative humidity and at a constant air velocity of 1.0 m s−1. The experimental curves were fitted to seven different drying models. For the Acco cultivar, the drying behaviour was best predicted by the Logarithmic and Page model for blanched (R2 ranging between 0.9966 and 0.9989) and unblanched (R2 = 0.9918) samples, respectively. Furthermore, for the Herskawitz cultivar, Logarithm, Page and Midili models were most suitable for predicting drying behaviour of both blanched and unblanched samples. Also, for the Wonderful cultivar, Logarithm and Midili models were most accurate for predicting the drying behaviour for both blanched and unblanched samples amongst other models. The blanched samples dried faster with shorter drying times: “Acco” (7 h), “Herskawitz” (8 h), and “Wonderful” (7 h), compared to the unblanched samples, which dried after 15, 20 and 11 h, respectively. Effective diffusion coefficient of moisture in pomegranate arils ranged from 4.81 × 10−9 and 1.11 × 10−8 m2 s−1 for the Acco cultivar, for the Herskawitz cultivar; 3.29 × 10−9 and 1.01 × 10−8 m2 s−1 and for the Wonderful cultivar; 5.83 × 10−9 and 1.09 × 10−8 m2 s−1. Overall, blanching resulted in low energy consumption during drying of pomegranate arils. In addition, the Logarithmic model generally showed an appropriate model for blanched samples regardless of cultivar. For unblanched samples, the Page model was more appropriate for “Acco” and “Herskawitz”, while the Midili model was appropriate for “Wonderful”. Therefore, this study provided science-based and practical drying conditions for the investigated pomegranate cultivars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.