Gear fault diagnosis using vibration signals has become the subject of intensive studies to detect any sudden failure. However, these signals exhibit nonlinear and nonstationary behaviors when the rotating machine operates under multiple working conditions. Furthermore, fault features extraction and classification of multiple gear states are always unsatisfactory and considered as a huge task. This is the main reason that motivates us to develop a new intelligent gear fault diagnosis method in order to automatically identify and classify several kinds of gear defects under different work conditions. So in this article, we propose a combination between the maximal overlap discrete wavelet packet transform (MODWPT), entropy indicator, and a multilayer perceptron (MLP) neural network as a new automatic fault diagnosis approach. MODWPT decomposes the data signal into several components using a uniform frequency bandwidth. Each decomposed component is selected to extract feature vector using entropy indicator. Finally, MLP provides a powerful automatic tool for identifying and classifying the aforementioned extracted features. Experimental vibration signals of healthy gear; gear with general surface wear; gear with chipped tooth in length; gear with chipped tooth in width; gear with missing tooth; and gear with tooth root crack are recorded under fifteen different work conditions to test the effectiveness of the suggested technique. Experimental results affirm that our proposed approach can successfully detect, identify, and classify the gear fault pattern in all cases.
Nowadays, fault detection, identification, and classification seem to be the most difficult challenge for gear systems. It is a complex procedure because the defects affecting gears have the same frequency signature. Thus, the variation in load and speed of the rotating machine will, inevitably, lead to erroneous detection results. Moreover, it is important to discern the nature of the anomaly because each gear defect has several consequences on the mechanism’s performance. In this article, a new intelligent fault diagnosis approach consisting of Autogram combined with radial basis function neural network is proposed. Autogram is a new sophisticated enhancement of the conventional Kurtogram, while radial basis function is used for classification purposes of the gear state. According to this approach, the data signal is decomposed by maximal overlap discrete wavelet packet transform into frequency bands and central frequencies called nodes. Thereafter, the unbiased autocorrelation of the squared envelope for each node is computed in order to calculate the kurtosis for each one at every decomposition level. Finally, the feature matrix obtained from the previous step will be the input of the radial basis function neural network to provide a new automatic gear fault diagnosis technique. Experimental results from the gearbox with healthy state and five different types of gear defects under variable speeds and loads indicate that the proposed method can successfully detect, identify, and classify the gear faults in all cases.
Rotary machines consist of various devices such as gears, bearings, and shafts that operate simultaneously. As a result, vibration signals have nonlinear and non-stationary behavior, and the fault signature is always buried in overwhelming and interfering contents, especially in the early stages. As one of the most powerful non-stationary signal processing techniques, Kurtogram has been widely used to detect gear failure. Usually, vibration signals contain a relatively strong non-Gaussian noise which makes the defective frequencies non-dominant in the spectrum compared to the discrete components, which reduce the performance of the above method. Autogram is a new sophisticated enhancement of the conventional Kurtogram. The modern approach decomposes the data signal by Maximal Overlap Discrete Wavelet Packet Transform into frequency bands and central frequencies called nodes. Subsequently, the unbiased autocorrelation of the squared envelope for each node is computed to select the node with the highest kurtosis value. Finally, Fourier transform is applied to that squared envelope to extract the fault signature. In this article, the proposed method is tested and compared to Fast Kurtogram for gearbox fault diagnosis using experimental vibration signals. The experimental results improve the detectability of the proposed method and affirm its effectiveness.
Nowadays, multi-fault diagnosis has become the most interesting topic for researchers, since it has lately attracted a substantial attention. The most published works recently have considered defects detection, identification, and classification as the toughest challenge for rotating machinery monitoring. As feature extraction requires robust techniques for online inspection with a high level of expertise to make automatic decisions on the running machine health status, a robust approach is required to adjust the misclassification of the extracted features, especially under various working conditions. In this paper, we propose the combination of two Time Domain Features (TDFs) in tandem with Singular Value Decomposition (SVD) and Fuzzy Logic System (FLS) to build an enhanced fault diagnosis technique for rolling bearing. The original vibration signal is divided first into several data samples. Thereafter, TDFs are applied on each sample to construct a feature matrix during the feature extraction step. Afterwards, SVD is performed on the obtained matrices in order to reduce their dimension and select the most stable vectors (singular values). Finally, FLS is employed as a powerful tool for automatic feature classification. Experimental results confirm that our suggested approach can enhance the ability to assess the degradation of bearing faults with a higher recognition sensitivity even under different working conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.