The detection of plant diseases, including fungi, is a major challenge for reducing yield gaps of crops across the world. We explored the potential of the PROCOSINE radiative transfer model to assess the effect of the fungus Pseudocercospora fijiensis on leaf tissues using laboratory-acquired submillimetre-scale hyperspectral images in the visible and near-infrared spectral range. The objectives were (i) to assess the dynamics of leaf biochemical and biophysical parameters estimated using PROCOSINE inversion as a function of the disease stages, and (ii) to discriminate the disease stages by using a Linear Discriminant Analysis model built from the inversion results. The inversion results show that most of the parameter dynamics are consistent with expectations: for example, the chlorophyll content progressively decreased as the disease spreads, and the brown pigments content increased. An overall accuracy of 78.7% was obtained for the discrimination of the six disease stages, with errors mainly occurring between asymptomatic samples and first visible disease stages. PROCOSINE inversion provides relevant ecophysiological information to better understand how P. fijiensis affects the leaf at each disease stage. More particularly, the results suggest that monitoring anthocyanins may be critical for the early detection of this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.