Causal reversibility in concurrent systems means that events that the origin of other events can only be undone after undoing of its consequences. In opposite to backtracking, the events which are independent of each other can be reversed in an arbitrary order, in the other words, we have flexible reversibility w.r.t the causality relation. An implementation of Individual token interpretation ofPetri Nets (IPNs) was been proposed by Rob Van Glabbeek et al, the present paper investigates into a study of causal reversibility within IPNs. Given N be an IPN, by adding an intuitive firing rule to undo transitions according to the causality relation, the coherence of N is assured, i.e., the set of all reachable states of N in the reversible version and that of the original one are identical. Furthermore, reversibility in N is flexible and their initial state can be accessible in reverse from any state. In this paper an approach for controllingcausal-reversibility within IPNs is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.