In this paper, we provide a Dynamic Programming algorithm for online monitoring of the state robustness of Metric Temporal Logic specifications with past time operators. We compute the robustness of MTL with unbounded past and bounded future temporal operators (MTL <+∞ +pt ) over sampled traces of Cyber-Physical Systems. We implemented our tool in Matlab as a Simulink block that can be used in any Simulink model. We experimentally demonstrate that the overhead of the MTL <+∞ +pt robustness monitoring is acceptable for certain classes of practical specifications.
One of the advantages of adopting a Model Based Development (MBD) process is that it enables testing and verification at early stages of development. However, it is often desirable to not only verify/falsify certain formal system specifications, but also to automatically explore the properties that the system satisfies.In this work, we present a framework that enables property exploration for Cyber-Physical Systems. Namely, given a parametric specification with multiple parameters, our solution can automatically infer the ranges of parameters for which the property does not hold on the system. In this paper, we consider parametric specifications in Metric or Signal Temporal Logic (MTL or STL). Using robust semantics for MTL, the parameter mining problem can be converted into a Pareto optimization problem for which we can provide an approximate solution by utilizing stochastic optimization methods. We include algorithms for the exploration and visualization of multi-parametric specifications. The framework is demonstrated on an industrial size, high-fidelity engine model as well as examples from related literature.
Abstract-We provide a dynamic programming algorithm for the monitoring of a fragment of Timed Propositional Temporal Logic (TPTL) specifications. This fragment of TPTL, which is more expressive than Metric Temporal Logic, is characterized by independent time variables which enable the elicitation of complex real-time requirements. For this fragment, we provide an efficient polynomial time algorithm for off-line monitoring of finite traces. Finally, we provide experimental results on a prototype implementation of our tool in order to demonstrate the feasibility of using our tool in practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.