Pulsed Laser Ablation in Liquid (PLAL) has become an increasingly important technique for metals production and metal oxides nanoparticles (NPs) and others. This technique has its many advantages compared with other conventional techniques (physical and chemical). This work was devoted for production of Zirconia (ZrO2) nanoparticles via PLAL technique from a solid zirconium target immersed in a group of wet environments in order to study the effect of different surfactants on the optical properties and structure of ZrO2 nanoparticles. The solutions which used for this purpose are sodium dodecyl sulfate (SDS). The produces NPs were characterized by mean of many tests such as UV-visible (UV-Vis.), Transmission Electron Microscope (TEM) and Z-Potential. The UVVis spectra show a blue shift in the presence of SDS solution which indicates quantum confinement property of the NPs. The TEM test shows less than 10 nm average particle sizes with spherical and irregular shapes. It was found that use surfactant solution leads to significantly higher ablation efficiency accomplished with finer spherical nanoparticles sizes. Z-Potential test shows values in the range of (-41.3) mV and (+56.1) mV which indicate for NPs stability with extremely low agglomeration solution.
Pulsed Laser Ablation in Liquid (PLAL) has become an increasingly important technique for metals production and metal oxides nanoparticles (NPs). This technique has its many advantages compared with other conventional techniques (physical and chemical). This work was devoted for production of alumina (Al 2 O 3 ) nanoparticles via PLAL techniquefrom a solid alumina target immersed in Distilled Water (D.W.) at different values of laser fluences in order to study the effect of laser fluences on the optical properties and structure of Al 2 O 3 nanoparticles. The controllability of particle size and size distribution is shown in this paper to be dependent upon laser fluences and it proved that the ablation at lower fluence led to the creation of smaller nanoparticles, smaller aggregates of nanoparticles, and a lower concentration of nanoparticles in contrast an increase of fluence leads to the formation of larger nanoparticles and most of these NPs were aggregated. The produces NPs were characterized by mean of many tests such as UV-visible (UV-Vis.), Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.