Let k be a positive integer, and let G be a graph with minimum degree at least k. In their study (2010), Henning and Kazemi defined the k-tuple total domination number γ×k,tG of G as the minimum cardinality of a k-tuple total dominating set of G, which is a vertex set such that every vertex of G is adjacent to at least k vertices in it. If G̅ is the complement of G, the complementary prism GG̅ of G is the graph formed from the disjoint union of G and G̅ by adding the edges of a perfect matching between the corresponding vertices of G and G̅. In this paper, we extend
some of the results of Haynes et al. (2009) for the k-tuple total domination number
and also obtain some other new results. Also we find the k-tuple total domination number of the
complementary prism of a cycle, a path, or a complete multipartite graph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.