Touch and pain sensations are complementary aspects of daily life that convey crucial information about the environment while also providing protection to our body. Technological advancements in prosthesis design and control mechanisms assist amputees to regain lost function but often they have no meaningful tactile feedback or perception. In the present study, we propose a bio-inspired tactile system with a population of 23 digital afferents: 12 RA-I, 6 SA-I, and 5 nociceptors. Indeed, the functional concept of the nociceptor is implemented on the FPGA for the first time. One of the main features of biological tactile afferents is that their distal axon branches in the skin, creating complex receptive fields. Given these physiological observations, the bio-inspired afferents are randomly connected to the several neighboring mechanoreceptors with different weights to form their own receptive field. To test the performance of the proposed neuromorphic chip in sharpness detection, a robotic system with three-degree of freedom equipped with the tactile sensor indents the 3D-printed objects. Spike responses of the biomimetic afferents are then collected for analysis by rate and temporal coding algorithms. In this way, the impact of the innervation mechanism and collaboration of afferents and nociceptors on sharpness recognition are investigated. Our findings suggest that the synergy between sensory afferents and nociceptors conveys more information about tactile stimuli which in turn leads to the robustness of the proposed neuromorphic system against damage to the taxels or afferents. Moreover, it is illustrated that spiking activity of the biomimetic nociceptors is amplified as the sharpness increases which can be considered as a feedback mechanism for prosthesis protection. This neuromorphic approach advances the development of prosthesis to include the sensory feedback and to distinguish innocuous (non-painful) and noxious (painful) stimuli.
To obtain deeper insights into the tactile processing pathway from a population-level point of view, we have modeled three stages of the tactile pathway from the periphery to the cortex in response to indentation and scanned edge stimuli at different orientations. Three stages in the tactile pathway are, (1) the first-order neurons which innervate the cutaneous mechanoreceptors, (2) the cuneate nucleus in the midbrain and (3) the cortical neurons of the somatosensory area. In the proposed network, the first layer mimics the spiking patterns generated by the primary afferents. These afferents have complex skin receptive fields. In the second layer, the role of lateral inhibition on projection neurons in the cuneate nucleus is investigated. The third layer acts as a biomimetic decoder consisting of pyramidal and cortical interneurons that correspond to heterogeneous receptive fields with excitatory and inhibitory sub-regions on the skin. In this way, the activity of pyramidal neurons is tuned to the specific edge orientations. By modifying afferent receptive field size, it is observed that the larger receptive fields convey more information about edge orientation in the first spikes of cortical neurons when edge orientation stimuli move across the patch of skin. In addition, the proposed spiking neural model can detect edge orientation at any location on the simulated mechanoreceptor grid with high accuracy. The results of this research advance our knowledge about tactile information processing and can be employed in prosthetic and bio-robotic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.