To evaluate effects of different dry period lengths on milk yield, milk composition, and energy balance of dairy cows, 122 multiparous and primiparous Holstein dairy cows were used in a completely randomized experimental design with 56-, 42-, and 35-d dry period lengths. Actual dry period lengths for respective treatments (TRT) were 56 +/- 5.1 d, 42 +/- 2.1 d, and 35 +/- 2.7 d. Overall, cows in the 42- and 56-d TRT gained more body condition than those in 35-d TRT during the dry period; however, postpartum body condition score did not change substantially among the TRT. Although from 3 to 210 DIM, differences were not detected in the milk yield of multiparous cows between the 35- and 56-d TRT, primiparous cows in the 35-d TRT produced less milk than those in 56-d TRT. In primiparous cows, the milk production at wk 9, 10, and 11 of lactation was lower in the 35-d compared with the 56-d TRT. Primiparous cows in the 35-d compared with the 56-d TRT produced less milk protein. In the 35-d TRT, serum triglyceride concentration was greater in primiparous cows than in multiparous cows during the peripartum period. Among primiparous cows, those in the 56-d TRT had greater concentrations of nonesterified fatty acids than those in the 35-d TRT during the peripartum period. No significant differences were observed in concentrations of serum glucose, insulin, and insulin-like growth factor-I during early lactation among TRT. There was also no difference among TRT for incidence of metabolic disorders. Thus, this study indicates that shortening the dry period to 35 d may be beneficial in multiparous and overconditioned cows, but not in primiparous cows.
Diets deficient in protein often increase food consumption, body weight and fat mass; however, the underlying mechanisms remain poorly understood. We compared the effects of diets varying in protein concentrations on energy balance in obesity-prone rats. We demonstrate that protein-free (0% protein calories) diets decreased energy intake and increased energy expenditure, very low protein (5% protein) diets increased energy intake and expenditure, whereas moderately low protein (10% protein) diets increased energy intake without altering expenditure, relative to control diet (15% protein). These diet-induced alterations in energy expenditure are in part mediated through enhanced serotonergic and β-adrenergic signaling coupled with upregulation of key thermogenic markers in brown fat and skeletal muscle. The protein-free and very low protein diets decreased plasma concentrations of multiple essential amino acids, anorexigenic and metabolic hormones, but these diets increased the tissue expression and plasma concentrations of fibroblast growth factor-21. Protein-free and very low protein diets induced fatty liver, reduced energy digestibility, and decreased lean mass and body weight that persisted beyond the restriction period. In contrast, moderately low protein diets promoted gain in body weight and adiposity following the period of protein restriction. Together, our findings demonstrate that low protein diets produce divergent effects on energy balance.
Together, these data demonstrate that in obese rats, whey, casein, and their combination improve energy balance through differential effects on food intake, taste preference, energy expenditure, glucose tolerance, and gut hormone secretion.
The dry period is required to facilitate cell turnover in the bovine mammary gland in order to optimize milk yield in the next lactation. Traditionally, an 8-week dry period has been a standard management practice for dairy cows based on retrospective analyses of milk yields following various dry period lengths. However, as milk production per cow has increased, transitioning cows from the nonlactating state to peak milk yield has grown more problematic. This has prompted new studies on dry period requirements for dairy cows. These studies indicate a clear parity effect on dry period requirement. First parity animals require a 60-day dry period, whereas lactations following later parities demonstrate no negative impact with 30-day dry period or even eliminating the dry period when somatotropin (ST) is also used to maintain milk yields. Shortened dry periods in first parity animals were associated with reduced mammary cell turnover during the dry period and early lactation and increased numbers of senescent cells and reduced functionality of lactating alveolar mammary cells postpartum. Use of ST and increased milking frequency postpartum reduced the impact of shortened dry periods. The majority of new intramammary infections occur during the dry period and persist into the following lactation. There is therefore the possibility of altering mastitis incidence by modifying or eliminating the dry period in older parity animals. As the composition of mammary secretions including immunoglobulins may be reduced when the dry period is reduced or eliminated, there is the possibility that the immune status of cows during the peripartum period is influenced by the length of the dry period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.