Automatic detection of maculopathy disease is a very important step to achieve high‐accuracy results for the early discovery of the disease to help ophthalmologists to treat patients. Manual detection of diabetic maculopathy needs much effort and time from ophthalmologists. Detection of exudates from retinal images is applied for the maculopathy disease diagnosis. The first proposed framework in this paper for retinal image classification begins with fuzzy preprocessing in order to improve the original image to enhance the contrast between the objects and the background. After that, image segmentation is performed through binarization of the image to extract both blood vessels and the optic disc and then remove them from the original image. A gradient process is performed on the retinal image after this removal process for discrimination between normal and abnormal cases. Histogram of the gradients is estimated, and consequently the cumulative histogram of gradients is obtained and compared with a threshold cumulative histogram at certain bins. To determine the threshold cumulative histogram, cumulative histograms of images with exudates and images without exudates are obtained and averaged for each type, and the threshold cumulative histogram is set as the average of both cumulative histograms. Certain histogram bins are selected and thresholded according to the estimated threshold cumulative histogram, and the results are used for retinal image classification. In the second framework in this paper, a Convolutional Neural Network (CNN) is utilized to classify normal and abnormal cases.
This article is mainly concerned with COVID-19 diagnosis from X-ray images. The number of cases infected with COVID-19 is increasing daily, and there is a limitation in the number of test kits needed in hospitals. Therefore, there is an imperative need to implement an efficient automatic diagnosis system to alleviate COVID-19 spreading among people. This article presents a discussion of the utilization of convolutional neural network (CNN) models with different learning strategies for automatic COVID-19 diagnosis. First, we consider the CNN-based transfer learning approach for automatic diagnosis of COVID-19 from X-ray images with different training and testing ratios. Different pre-trained deep learning models in addition to a transfer learning model are considered and compared for the task of COVID-19 detection from X-ray images. Confusion matrices of these studied models are presented and analyzed. Considering the performance results obtained, ResNet models (ResNet18, ResNet50, and ResNet101) provide the highest classification accuracy on the two considered datasets with different training and testing ratios, namely 80/20, 70/30, 60/40, and 50/50. The accuracies obtained using the first dataset with 70/30 training and testing ratio are 97.67%, 98.81%, and 100% for ResNet18, ResNet50, and ResNet101, respectively. For the second dataset, the reported accuracies are 99%, 99.12%, and 99.29% for ResNet18, ResNet50, and ResNet101, respectively. The second approach is the training of a proposed CNN model from scratch. The results confirm that training of the CNN from scratch can lead to the identification of the signs of COVID-19 disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.