The large differences in physical and thermal properties of the carbon fibre-reinforced polymer (CFRP) composite constituents make laser machining of this material challenging. An extended heat-affected zone (HAZ) often occurs. The availability of ultrashort laser pulse sources such as picosecond lasers makes it possible to improve the laser machining quality of these materials. This paper reports an investigation on the drilling and machining of CFRP composites using a state-of-the-art 400 W picosecond laser system. Small HAZs (\25 lm) were obtained on the entry side of 6-mm-diameter hole drilled on sample of 6 mm thickness, whereas no HAZ was seen below the top surface on the cut surfaces. Multiple ring material removal strategy was used. Furthermore, the effect of laser processing parameters such as laser power, scanning speed and repetition rate on HAZ sizes and ablation depth was investigated.
Carbon fibre-reinforced polymer (CFRP) composites have found wide applications in the aerospace, marine, sports and automotive industries owing to their lightweight and acceptable mechanical properties compared to the commonly used metallic materials. Machining of CFRP composites using lasers can be challenging due to inhomogeneity in the material properties and structures, which can lead to thermal damages during laser processing. In the previous studies, Nd:YAG, diode-pumped solidstate, CO 2 (continuous wave), disc and fibre lasers were used in cutting CFRP composites and the control of damages such as the size of heat-affected zones (HAZs) remains a challenge. In this paper, a short-pulsed (8 ls) transversely excited atmospheric pressure CO 2 laser was used, for the first time, to machine CFRP composites. The laser has high peak powers (up to 250 kW) and excellent absorption by both the carbon fibre and the epoxy binder. Design of experiment and statistical modelling, based on response surface methodology, was used to understand the interactions between the process parameters such as laser fluence, repetition rate and cutting speed and their effects on the cut quality characteristics including size of HAZ, machining depth and material removal rate (MRR). Based on this study, process parameter optimization was carried out to minimize the HAZ and maximize the MRR. A discussion is given on the potential applications and comparisons to other lasers in machining CFRP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.