The observation of the non-local properties of multipartite entangled states is of great importance for quantum information protocols. Such properties, however, are fragile and may not be observed in the presence of decoherence exhibited by practical physical systems. In this work, we investigate the robustness of the non-locality of symmetric states experiencing phase and amplitude damping, using suitable Bell inequalities based on an extended version of Hardy's paradox. We derive thresholds for observing non-locality in terms of experimental noise parameters, and demonstrate the importance of the choice of the measurement bases for optimizing the robustness. For W states, in the phase damping case, we show that this choice can lead to a trade-off between obtaining a high violation of the non-local test and optimal robustness thresholds; we also show that in this setting the nonlocality of W states is particularly robust for a large number of qubits. Furthermore, we apply our techniques to the discrimination of symmetric states belonging to different entanglement classes, thus illustrating their usefulness for a wide range of practical quantum information applications.
In this work we present a generalization of the recently developed Hardy-like logical proof of contextuality and of the so-called KCBS contextuality inequality for any qudit of dimension greater than three. Our approach uses compatibility graphs that can only be satisfied by qudits. We find a construction for states and measurements that satisfy these graphs and demonstrate both logical and inequality based contextuality for qudits. Interestingly, the quantum violation of the inequality is constant as dimension increases. We also discuss the issue of imprecision in experimental implementations of contextuality tests and a way of addressing this problem using the notion of ontological faithfulness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.