Image segmentation and registration are closely related image processing techniques and often required as simultaneous tasks. In this work, we introduce an optimization-based approach to a joint registration and segmentation model for multimodal images deformation. The model combines an active contour variational term with mutual information (MI) smoothing fitting term and solves in this way the difficulties of simultaneously performed segmentation and registration models for multimodal images. This combination takes into account the image structure boundaries and the movement of the objects, leading in this way to a robust dynamic scheme that links the object boundaries information that changes over time. Comparison of our model with state of art shows that our method leads to more consistent registrations and accurate results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.