This paper focuses on an important issue regarding the forecasting of the hourly energy consumption in the case of large electricity non-household consumers that account for a significant percentage of the whole electricity consumption, the accurate forecasting being a key-factor in achieving energy efficiency. In order to devise the forecasting solutions, we have developed a series of dynamic neural networks for solving nonlinear time series problems, based on the non-linear autoregressive (NAR) and non-linear autoregressive with exogenous inputs (NARX) models. In both cases, we have used large datasets comprising the hourly energy consumption recorded by the smart metering device from a commercial center type of consumer (a large hypermarket), while in the NARX case we have used supplementary temperature and time stamps datasets. Of particular interest was to research and obtain an optimal mix between the training algorithm (Levenberg-Marquardt, Bayesian Regularization, Scaled Conjugate Gradient), the hidden number of neurons and the delay parameter. Using performance metrics and forecasting scenarios, we have obtained results that highlight an increased accuracy of the developed forecasting solutions. The developed hourly consumption forecasting solutions can bring significant benefits to both the consumers and electricity suppliers.
In this paper, we propose a scalable Big Data framework that collects the data from smart meters and weather sensors, pre-processes and loads it into a NoSQL database that is capable to store and further process large volumes of heterogeneous data. Then, a set of Machine Learning (ML) algorithms are designed and implemented to determine the load profiles and forecast the electricity consumption for residential buildings for the next 24 hours. For the Short-Term Load Forecast (STLF), a Feed-Forward Artificial Neural Network (FF-ANN) algorithm with backtracking adjustment of the learning rate that extends and optimizes the Nesterov learning method is proposed. Its performance is compared with six algorithms, i.e. FF-ANN with well-known learning methods, namely Momentum and Nesterov, Non-linear AutoRegressive with eXogenous (NARX), Deep Neural Network (DNN), Gradient Tree Boosting (GTB) and Random Forests (RF) that are competitive and powerful ML algorithms which have been successfully used for load forecast. Hence, for STLF, the seven algorithms are executed simultaneously and the best one is automatically selected considering its accuracy in terms of Root Mean Square Errors (RMSE). The proposed methodology contains the steps required to implement the Big Data framework, i.e. data pre-processing, transformation and loading, the configuration of the ML algorithms for dimensionality reduction, clustering, STLF with different algorithms from which the Best Performant Algorithm (BPA) is automatically selected to provide STLF for the next 24 hours. The methodology is ultimately tested considering a real case of a residential smart building.
Renewable energy systems (RES) are reliable by nature; the sun and wind are theoretically endless resources. From the beginnings of the power systems, the concern was to know “how much” energy will be generated. Initially, there were voltmeters and power meters; nowadays, there are much more advanced solar controllers, with small displays and built-in modules that handle big data. Usually, large photovoltaic (PV)-battery systems have sophisticated energy management strategies in order to operate unattended. By adding the information collected by sensors managed with powerful technologies such as big data and analytics, the system is able to efficiently react to environmental factors and respond to consumers’ requirements in real time. According to the weather parameters, the output of PV could be symmetric, supplying an asymmetric electricity demand. Thus, a smart adaptive switching module that includes a forecasting component is proposed to improve the symmetry between the PV output and daily load curve. A scaling approach for smaller off-grid systems that provides an accurate forecast of the PV output based on data collected from sensors is developed. The proposed methodology is based on sensor implementation in RES operation and big data technologies are considered for data processing and analytics. In this respect, we analyze data captured from loggers and forecast the PV output with Support Vector Machine (SVM) and linear regression, finding that Root Mean Square Error (RMSE) for prediction is considerably improved when using more parameters in the machine learning process.
In this paper, we report a study having as a main goal the obtaining of a method that can provide an accurate forecast of the residential electricity consumption, refining it up to the appliance level, using sensor recorded data, for residential smart homes complexes that use renewable energy sources as a part of their consumed electricity, overcoming the limitations of not having available historical meteorological data and the unwillingness of the contractor to acquire such data periodically in the future accurate short-term forecasts from a specialized institute due to the implied costs. In this purpose, we have developed a mixed artificial neural network (ANN) approach using both non-linear autoregressive with exogenous input (NARX) ANNs and function fitting neural networks (FITNETs). We have used a large dataset containing detailed electricity consumption data recorded by sensors, monitoring a series of individual appliances, while in the NARX case we have also used timestamps datasets as exogenous variables. After having developed and validated the forecasting method, we have compiled it in view of incorporating it into a cloud solution, being delivered to the contractor that can provide it as a service for a monthly fee to both the operators and residential consumers.
This paper deals with optimal scheduling of networked microgrids (NMGs) considering resilience constraints. The proposed scheme attempts to mitigate the damaging impacts of electricity interruptions by effectively exploiting NMG capabilities. A three-stage framework is proposed. In Stage 1, the optimal scheduling of NMGs is studied through determining the power transaction between the NMGs and upstream network, the output power of distributed energy resources (DERs), commitment status of conventional DERs as well as demand-side reserves. In Stage 2, the decisions made at Stage 1 are realized considering uncertainties pertaining to renewable generation, market price, power consumption of loads, and unintentional islanding of NMGs from the upstream network and resynchronization. Stage 3 deals with uncertainties of unintentional islanding of each MG from the rest of islanded NMGs and resynchronization. The problem is formulated as a mixed-integer linear programming problem and its effectiveness is assured by simulation studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.