Abstract. In this paper, we extend some results of D. Dolzan on finite rings to profinite rings, a complete classification of profinite commutative rings with a monothetic group of units is given. We also prove the metrizability of commutative profinite rings with monothetic group of units and without nonzero Boolean ideals. Using a property of Mersenne numbers, we construct a family of power 2 ℵ0 commutative non-isomorphic profinite semiprimitive rings with monothetic group of units.
We prove that every compact nilpotent ring R of characteristic p > 0 can be embedded in a ring of upper triangular matrices over a compact commutative ring. Furthermore, we prove that every compact topologically nilpotent ring R of characteristic p > 0, is embedded in a ring of infinite triangular matrices over F w(R) p .
We construct in this article three radicals in the class of compact right topological rings. We also prove that a simple left Noetherian compact right topological ring of prime characteristic is finite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.