Rosellinia necatrix is the causal agent of avocado white root rot (WRR). Control of this soil-borne disease is difficult, and the use of tolerant rootstocks may present an effective method to lessen its impact. To date, no studies on the molecular mechanisms regulating the avocado plant response towards this pathogen have been undertaken. To shed light on the mechanisms underpinning disease susceptibility and tolerance, molecular analysis of the gene’s response in two avocado rootstocks with a contrasting disease reaction was assessed. Gene expression profiles against R . necatrix were carried out in the susceptible ‘Dusa’ and the tolerant selection BG83 avocado genotypes by micro-array analysis. In ‘Dusa’, the early response was mainly related to redox processes and cell-wall degradation activities, all becoming enhanced after disease progression affected photosynthetic capacity, whereas tolerance to R . necatrix in BG83 relied on the induction of protease inhibitors and their negative regulators, as well as genes related to tolerance to salt and osmotic stress such as aspartic peptidase domain-containing proteins and gdsl esterase lipase proteins. In addition, three protease inhibitors were identified, glu protease, trypsin and endopeptidase inhibitors, which were highly overexpressed in the tolerant genotype when compared to susceptible ‘Dusa’, after infection with R . necatrix , reaching fold change values of 52, 19 and 38, respectively. The contrasting results between ‘Dusa’ and BG83 provide new insights into the different mechanisms involved in avocado tolerance to Phytophthora cinnamomi and R . necatrix , which are consistent with their biotrophic and necrotrophic lifestyles, respectively. The differential induction of genes involved in salt and osmotic stress in BG83 could indicate that R . necatrix penetration into the roots is associated with osmotic effects, suggesting that BG83’s tolerance to R . necatrix is related to the ability to withstand osmotic imbalance. In addition, the high expression of protease inhibitors in tolerant BG83 compared to susceptible ‘Dusa’ after infection with the pathogen suggests the important role that these proteins may play in the defence of avocado rootstocks against R . necatrix .
White root rot (WRR) disease caused by Rosellinia necatrix is one of the most important threats affecting avocado orchards in temperate regions. In this study, we monitored the progression of WRR disease at the leaf and root levels by the combination of nondestructive chlorophyll fluorescence measurements and confocal laser-scanning microscopy on avocado genotypes susceptible to R. necatrix. Leaf photochemistry was affected at early stages of disease development prior to the appearance of aboveground symptoms, made evident as significant decreases in the trapping efficiency of photosystem-II (Fv′/Fm′) and in the steady-state of chlorophyll fluorescence yield (Fs) normalized to the minimal fluorescence yield (F0) (Fs/F0). Decreases in Fv′/Fm′ and Fs/F0 were associated with different degrees of fungal penetration, primarily in the lateral roots but not in areas next to the main root collar. Aboveground symptoms were observed only when the fungus reached the root collar. Leaf physiology was also tracked in a tolerant genotype where no changes were observed during disease progression despite the presence of the fungus in the root system. These results highlight the usefulness of this technique for the early detection of fungal infection and the rapid removal of highly susceptible genotypes in rootstock avocado-breeding programs
BackgroundWhite root rot disease caused by Rosellinia necatrix is one of the most important threats affecting avocado productivity in tropical and subtropical climates. Control of this disease is complex and nowadays, lies in the use of physical and chemical methods, although none have proven to be fully effective. Detailed understanding of the molecular mechanisms underlying white root rot disease has the potential of aiding future developments in disease resistance and management. In this regard, this study used RNA-Seq technology to compare the transcriptomic profiles of R. necatrix during infection of susceptible avocado ‘Dusa’ roots with that obtained from the fungus cultured in rich medium.ResultsThe transcriptomes from three biological replicates of R. necatrix colonizing avocado roots (RGA) and R. necatrix growing on potato dextrose agar media (RGPDA) were analyzed using Illumina sequencing. A total of 12,104 transcripts were obtained, among which 1937 were differentially expressed genes (DEG), 137 exclusively expressed in RGA and 160 in RGPDA. During the root infection process, genes involved in the production of fungal toxins, detoxification and transport of toxic compounds, hormone biosynthesis, gene silencing and plant cell wall degradation were overexpressed. Interestingly, 24 out of the 137 contigs expressed only during R. necatrix growth on avocado roots, were predicted as candidate effector proteins (CEP) with a probability above 60%. The PHI (Pathogen Host Interaction) database revealed that three of the R. necatrix CEP showed homology with previously annotated effectors, already proven experimentally via pathogen-host interaction.ConclusionsThe analysis of the full-length transcriptome of R. necatrix during the infection process is suggesting that the success of this fungus to infect roots of diverse crops might be attributed to the production of different compounds which, singly or in combination, interfere with defense or signaling mechanisms shared among distinct plant families. The transcriptome analysis of R. necatrix during the infection process provides useful information and facilitates further research to a more in -depth understanding of the biology and virulence of this emergent pathogen. In turn, this will make possible to evolve novel strategies for white root rot management in avocado.
Avocado embryogenic cultures were selected for resistance to the culture filtrate (CF) of Rosellinia necatrix, the causal agent of White Root Rot disease. A resistant callus line was obtained through recurrent selections in progressively increasing concentrations of fungal CF (from 60% to 80%). RNA sequencing (RNA-Seq) technology was used to compare the transcriptomic profiles of the avocado embryogenic-callus-resistant line L3 (capable to survive in the presence of 80% CF) and control line AN-9 (not exposed to CF), after 24 h of growth in a medium containing 40% CF. A total of 25,211 transcripts were obtained, of which 4,918 and 5,716 were differentially expressed in the resistant and control line, respectively. Interestingly, exposure of embryogenic callus lines to 40% of R. necatrix exudates induced genes previously reported to be related to avocado defense against fungal diseases (lignin biosynthesis, Pathogenesis Related (PR) proteins, WRKY (WRKYGQK) Transcription Factor (TF), NAC (NAM, ATAF1/2, and CUC2) TF, proteinase inhibitors and Ethylene Response Transcription Factor (ERF), among others), which were accumulated in greater amounts in the resistant line in comparison to the susceptible one. This research will contribute to the understanding of avocado defense against this pathogen, thereby aiding in the selection of resistant avocado rootstocks.
Avocado consumption is increasing year by year, and its cultivation has spread to many countries with low water availability, which threatens the sustainability and profitability of avocado orchards. However, to date, there is not much information on the behavior of commercial avocado rootstocks against drought. The aim of this research was to evaluate the physiological and molecular responses of ‘Dusa’ avocado rootstock to different levels of water stress. Plants were deficit irrigated until soil water content reached 50% (mild-WS) and 25% (severe-WS) of field capacity. Leaf water potential (w), net CO2 assimilation rates (AN), transpiration rate (E), stomatal conductance (gs), and plant transpiration rates significantly decreased under both WS treatments, reaching significantly lower values in severe-WS plants. After rewatering, mild- and severe-WS plants showed a fast recovery in most physiological parameters measured. To analyze root response to different levels of drought stress, a cDNA avocado stress microarray was carried out. Plants showed a wide transcriptome response linked to the higher degree of water stress, and functional enrichment of differentially expressed genes (DEGs) revealed abundance of common sequences associated with water stress, as well as specific categories for mild-WS and severe-WS. DEGs previously linked to drought tolerance showed overexpression under both water stress levels, i.e., several transcription factors, genes related to abscisic acid (ABA) response, redox homeostasis, osmoprotection, and cell-wall organization. Taken altogether, physiological and molecular data highlight the good performance of ‘Dusa’ rootstock under low-water-availability conditions, although further water stress experiments must be carried out under field conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.