Opioids are perhaps the most effective analgesics in medicine. However, between 1999 to 2018, over 400,000 people in the United States died from opioid overdose. Excessive opioids make breathing lethally slow and shallow, a side-effect called opioid induced respiratory depression. This doubled-edged sword has sparked the desire to develop novel therapeutics that provide opioid-like analgesia without depressing breathing. One such approach has been the design of so-called 'biased agonists' that signal through some, but not all pathways downstream of the µ-opioid receptor (MOR), the target of morphine and other opioid analgesics. This rationale stems from a study suggesting that MOR-induced ß2-arrestin dependent signaling is responsible for opioid respiratory depression, whereas adenylyl cyclase inhibition produces analgesia. To verify this important result that motivated the 'biased agonist' approach, we re-examined breathing in ß2-arrestin deficient mice and instead find no connection between ß2-arrestin and opioid respiratory depression. This result suggests that any attenuated effect of 'biased agonists' on breathing is through an as-yet defined mechanism.
Opioids are perhaps the most effective analgesics in medicine. However, from 1999 to 2018, they also killed more than 400,000 people in the United States by suppressing breathing, a common side-effect known as opioid induced respiratory depression. This doubled-edged sword has inspired the dream of developing novel therapeutics that provide opioid-like analgesia without respiratory depression. One such approach has been to develop so-called ‘biased agonists’ that activate some, but not all pathways downstream of the µ-opioid receptor (MOR), the target of morphine and other opioid analgesics. This hypothesis stems from a study suggesting that MOR-mediated activation of ß2-Arrestin is the downstream signaling pathway responsible for respiratory depression, whereas inhibition of adenylyl cyclase produces analgesia. To further verify this model, which represents the motivation for the biased agonist approach, we examined respiratory behavior in mice lacking the gene for ß2-Arrestin. Contrary to previous findings, we find no correlation between ß2-Arrestin function and opioid-induced respiratory depression, suggesting that any effect of biased agonists must be mediated through an as-yet to be identified signaling mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.