A B S T R A C T Prostacyclin (PGI2) is the most potent, naturally occurring inhibitor of platelet aggregation known. To determine whether PGI2 is bound by platelets, high specific activity [9-3H]PGI2 was synthesized by iodination and subsequent base treatment of the labeled precursor [9-3H]prostaglandin (PG)F, methyl ester. Binding experiments were performed at room temperature with normal citrated human platelet-rich plasma that contained [14C]sucrose or ['4C]PGF,l< as an internal marker for the extracellular space. Binding of [3H]PGI2 plateaued within 2 min and this bond radioactivity could be displaced rapidly by excess nonradioactive PGI2. Scatchard analysis of concentration-dependent binding yielded a hyperbolic plot which appeared to be caused by the existence of two classes of binding sites. The higher affinity class has a dissociation constant of 12.1±2.7 nM and a capacity of 93 (±21)sites per platelet. The lower affinity class had a dissociation constant of 0.909±t.236 ,uM and a capacity of 2,700+700 sites per platelet. The relative ability of PGI2, PGE1, PGE2, and 6-keto-PGFi,a to displace[3H]PGI2 initially bound to the higher affinity class of sites were 100:5:<0.3: <0.3. These relative abilities parallel the relative potencies of these compounds as inhibitors ofADP-induced platelet aggregation in vitro.However PGD2, which is more potent than PGE, as an inhibitor of aggregation, did not displace bound [3H]PGI2. The higher affinity binding site for PGI2 appears to be the specific receptor through which PGI2 exerts its effect on platelets.
Platelet concentrates intended for transfusion to immunosuppressed patients are irradiated to minimize transfusion-induced graft-versus-host disease. Because few reports describe how irradiation influences stored platelets, the authors studied whether 5000 rad of gamma irradiation, the maximum dose currently used clinically, altered platelets in vitro. Platelet concentrates were stored for either 1 day or 5 days in plastic (PL 732) containers before gamma irradiation. One unit of a pair of identical platelet concentrates was irradiated; the second unit served as a control. Irradiation did not alter platelet morphology, mean platelet volume, expression of platelet-factor-3 activity, response to hypotonic stress, extent of discharge of lactate dehydrogenase, release of beta-thromboglobulin, formation of thromboxane B2, nor the ability to undergo synergistic aggregation. The lack of any substantial change was observed whether the platelet concentrates were stored initially for either 1 day or 5 days. These results suggest that stored platelets are not altered deleteriously by irradiation with 5000 rad.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.