A comprehensive, bottoms-up characterization of two of the most widely used biomedical Ti-containing alloys, NiTi and β-Ti, was carried out applying a novel combination of neutron diffraction, neutron prompt-gamma activation, surface morphology, thermal analysis and mechanical tests, to relate composition, microstructure and physical-chemical-mechanical properties to unknown processing history. The commercial specimens studied are rectangular (0.43 × 0.64 mm~0.017 × 0.025 inch) wires, in both pre-formed U-shape and straight extended form. Practical performance was quantitatively linked to the influence of alloying elements, microstructure and thermo-mechanical processing. Results demonstrated that the microstructure and phase composition of β-Ti strongly depended on the composition, phase-stabilizing elements in particular, in that the 10.2 wt.% Mo content in Azdent resulted in 41.2% α phase, while Ormco with 11.6 wt.% Mo contained only β phase. Although the existence of α phase is probable in the meta-stable alloy, the α phase has never been quantified before. Further, the phase transformation behavior of NiTi directly arose from the microstructure, whilst being highly influenced by thermo-mechanical history. A strong correlation (r = 0.878) was established between phase transformation temperature and the force levels observed in bending test at body temperature, reconfirming that structure determines performance, while also being highly influenced by thermo-mechanical history. The novel methodology described is evidenced as generating a predictive profile of the eventual biomechanical properties and practical performance of the commercial materials. Overall, the work encompasses a reproducible and comprehensive approach expected to aid in future optimization and rational design of devices of metallic origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.