Hydration status is linked with health, wellness, and performance. We evaluated hydration status, water intake, and urine output for seven consecutive days in healthy adults. Volunteers living in Spain, Germany, or Greece (n = 573, 39 ± 12 years (51.1% males), 25.0 ± 4.6 kg/m2 BMI) participated in an eight-day study protocol. Total water intake was estimated from seven-day food and drink diaries. Hydration status was measured in urine samples collected over 24 h for seven days and in blood samples collected in fasting state on the mornings of days 1 and 8. Total daily water intake was 2.75 ± 1.01 L, water from beverages 2.10 ± 0.91 L, water from foods 0.66 ± 0.29 L. Urine parameters were: 24 h volume 1.65 ± 0.70 L, 24 h osmolality 631 ± 221 mOsmol/kg Η2Ο, 24 h specific gravity 1.017 ± 0.005, 24 h excretion of sodium 166.9 ± 54.7 mEq, 24 h excretion of potassium 72.4 ± 24.6 mEq, color chart 4.2 ± 1.4. Predictors for urine osmolality were age, country, gender, and BMI. Blood indices were: haemoglobin concentration 14.7 ± 1.7 g/dL, hematocrit 43% ± 4% and serum osmolality 294 ± 9 mOsmol/kg Η2Ο. Daily water intake was higher in summer (2.8 ± 1.02 L) than in winter (2.6 ± 0.98 L) (p = 0.019). Water intake was associated negatively with urine specific gravity, urine color, and urine sodium and potassium concentrations (p < 0.01). Applying urine osmolality cut-offs, approximately 60% of participants were euhydrated and 20% hyperhydrated or dehydrated. Most participants were euhydrated, but a substantial number of people (40%) deviated from a normal hydration level.
Increased interest in glycemic response derives from its linkage with chronic diseases, including obesity and type 2 diabetes. Our objective was to develop an in vitro method that predicts glycemic response. We proposed a simulated gastrointestinal digestion protocol that uses the concentration of dialyzable glucose (glucose in the soluble low molecular weight fraction of digests) as an index for the prediction of glycemic response. For protocol evaluation, dialyzable glucose from 30 foods or meals digested in vitro were compared with published values for their glycemic index (GI) (nine foods), glycemic load (GL) (16 foods) and glycemic response (14 meals). The correlations were significant when comparing dialyzable glucose with GL (Spearman’s rho = 0.953, p < 0.001), GI (Spearman’s rho = 0.800, p = 0.010) and glycemic response (Spearman’s rho = 0.736, p = 0.003). These results demonstrate that despite limitations associated with in vitro approaches, the proposed protocol may be a useful tool for predicting glycemic response of foods or meals.
This study explored the effects of physical activity (PA) and ambient temperature on water turnover and hydration status. Five-hundred seventy three healthy men and women (aged 20–60 years) from Spain, Greece and Germany self-reported PA, registered all food and beverage intake, and collected 24-h urine during seven consecutive days. Fasting blood samples were collected at the onset and end of the study. Food moisture was assessed using nutritional software to account for all water intake which was subtracted from daily urine volume to allow calculation of non-renal water loss (i.e., mostly sweating). Hydration status was assessed by urine and blood osmolality. A negative association was seen between ambient temperature and PA (r = −0.277; p < 0.001). Lower PA with high temperatures did not prevent increased non-renal water losses (i.e., sweating) and elevated urine and blood osmolality (r = 0.218 to 0.163 all p < 0.001). When summer and winter data were combined PA was negatively associated with urine osmolality (r = −0.153; p = 0.001). Our data suggest that environmental heat acts to reduce voluntary PA but this is not sufficient to prevent moderate dehydration (increased osmolality). On the other hand, increased PA is associated with improved hydration status (i.e., lower urine and blood osmolality).
Awareness on the importance of hydration in health has created an unequivocal need to enrich knowledge on water intake of the general population and on the contribution of beverages to total water intake. We evaluated in the past water intake in a sample of Greek adults using two approaches. In study A, volunteers completed the Water Balance Questionnaire (WBQ), a food frequency questionnaire, designed to evaluate water intake (n = 1092; 48.1% males; 43 ± 18 years). In study B, a different population of volunteers recorded water, beverage, and food intake in seven-day diaries (n = 178; 51.1% males; 37 ± 12 years). Herein, data were reanalyzed with the objective to reveal the contribution of beverages in total water intake with these different methodologies. Beverage recording was grouped in the following categories: Hot beverages; milk; fruit and vegetable juices; caloric soft drinks; diet soft drinks; alcoholic drinks; other beverages; and water. Total water intake and water intake from beverages was 3254 (SE 43) mL/day and 2551 (SE 39) mL/day in study A; and 2349 (SE 59) mL/day and 1832 (SE 56) mL/day in study B. In both studies water had the highest contribution to total water intake, approximately 50% of total water intake, followed by hot beverages (10% of total water intake) and milk (5% of total water intake). These two approaches contribute information on water intake in Greece and highlight the contribution of different beverages; moreover, they point out differences in results obtained from different methodologies attributed to limitations in their use.
Background Observational investigations into the health impacts of low-calorie sweeteners (LCSs) in humans fail to adequately identify or fully characterize LCS consumption. Objectives We aimed to utilize a novel biomarker approach to investigate exposure to 5 LCSs and to test whether reported low-calorie sweetened beverage (LCSB) consumption effectively identifies exposure to LCSs in adults. Methods In this cross-sectional analysis, 2 population studies were conducted in adults. Urinary excretions of 5 LCSs, namely acesulfame-K, saccharin, cyclamate, sucralose, and steviol glycosides, were simultaneously determined using LC tandem-MS. In Study 1, previously collected 24-h urine samples (n = 357) were analyzed. In Study 2, previously collected 24-h urine samples (n = 79) were analyzed to compare urinary excretions of LCSs with self-reported LCSB consumption for identifying LCS exposure. Exposure to LCSs was characterized using descriptive statistics and chi-square tests were performed to assess associations between age-groups and LCS excretion, and to assess the proportion of individuals identified as LCS consumers using biomarker data or reported LCSB consumption. Results A total of 341 adults (45% men) and 79 adults (39% men) were included in the final analysis of Studies 1 and 2, respectively. In Study 1, >96% of samples contained ≥1 LCS and almost 60% contained ≥3 LCSs. A greater proportion of younger adults (<40 y old) excreted ≥3 LCSs than older adults (>40 y old) (P < 0.001). In Study 2, a much higher prevalence of LCS consumption was observed using biomarker data (92%) than reported LCSB consumption (6%) (P < 0.001). Conclusions This work indicates widespread exposure to LCSs, suggesting that population-based research to date into LCS exposure and health may be flawed. Therefore, a urinary biomarker approach offers considerable potential for more robust investigations in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.