BackgroundCancer stem cells (CSCs) are thought to be responsible for tumor regeneration after chemotherapy, although direct confirmation of this remains forthcoming. We therefore investigated whether drug treatment could enrich and maintain CSCs and whether the high tumorogenic and metastatic abilities of CSCs were based on their marked ability to produce growth and angiogenic factors and express their cognate receptors to stimulate tumor cell proliferation and stroma formation.Methodology/FindingsTreatment of lung tumor cells with doxorubicin, cisplatin, or etoposide resulted in the selection of drug surviving cells (DSCs). These cells expressed CD133, CD117, SSEA-3, TRA1-81, Oct-4, and nuclear β-catenin and lost expression of the differentiation markers cytokeratins 8/18 (CK 8/18). DSCs were able to grow as tumor spheres, maintain self-renewal capacity, and differentiate. Differentiated progenitors lost expression of CD133, gained CK 8/18 and acquired drug sensitivity. In the presence of drugs, differentiation of DSCs was abrogated allowing propagation of cells with CSC-like characteristics. Lung DSCs demonstrated high tumorogenic and metastatic potential following inoculation into SCID mice, which supported their classification as CSCs. Luminex analysis of human and murine cytokines in sonicated lysates of parental- and CSC-derived tumors revealed that CSC-derived tumors contained two- to three-fold higher levels of human angiogenic and growth factors (VEGF, bFGF, IL-6, IL-8, HGF, PDGF-BB, G-CSF, and SCGF-β). CSCs also showed elevated levels of expression of human VEGFR2, FGFR2, CXCR1, 2 and 4 receptors. Moreover, human CSCs growing in SCID mice stimulated murine stroma to produce elevated levels of angiogenic and growth factors.Conclusions/SignificanceThese findings suggest that chemotherapy can lead to propagation of CSCs and prevention of their differentiation. The high tumorigenic and metastatic potentials of CSCs are associated with efficient cytokine network production that may represent a target for increased efficacy of cancer therapy.
Early detection of ovarian cancer might improve clinical outcome. Some studies have shown the role of cytokines as a new group of tumor markers for ovarian cancer. We hypothesized that a panel comprised of multiple cytokines, which individually may not show strong correlation with the disease, might provide higher diagnostic power. To evaluate the diagnostic utility of cytokine panel, we used a novel multianalyte LabMAP profiling technology that allows simultaneous measurement of multiple markers. Concentrations of 24 cytokines (cytokines/chemokines, growth, and angiogenic factors) in combination with cancer antigen-125 (CA-125), were measured in sera of 44 patients with earlystage ovarian cancer, 45 healthy women, and 37 patients with benign pelvic tumors. Six markers, i.e., interleukin (IL)-6, IL-8, epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), monocyte chemoattractant protein-1 (MCP-1), and CA-125, showed significant differences in serum concentrations between ovarian cancer and control groups. Out of this group, IL-6, IL-8, VEGF, EGF, and CA-125, were used in a classification tree analysis that resulted in 84% sensitivity at 95% specificity. The receiver operator characteristic curve created using the combination of markers produced sensitivities between 90% and 100% in the area of 80% to 90% specificity, whereas the receiver operator characteristic curve for CA-125 alone resulted in sensitivities of 70% to 80%. The classification tree analysis for discrimination of benign condition from ovarian cancer used CA-125, granulocyte colony-stimulating factor (G-CSF), IL-6, EGF, and VEGF resulting in 86.5% sensitivity and 93.0% specificity. The presented data show that simultaneous testing of a panel of serum cytokines and CA-125 using LabMAP technology may present a promising approach for ovarian cancer detection.
Purpose: Interferon (IFN)-a2b is the only Food and Drug Administration^approved treatment for operable high-risk melanoma that has been shown to significantly and durably prolong relapse-free survival (RFS) of patients with stage IIB-III melanoma. Development of reliable serum assays may contribute to the development of methods for earlier detection of melanoma and the selection of patients who may be most susceptible to current available interventions with IFNa. Experimental Design: A powerful high-throughput xMAP multiplex immunobead assay technology (Luminex Corp., Austin, TX) was used to simultaneously test 29 cytokines, chemokines, angiogenic as well as growth factors, and soluble receptors in the sera of 179 patients with high-risk melanoma and 378 healthy individuals. Results: Serum concentrations of interleukin (IL)-1a, IL-1h, IL-6, IL-8, IL-12p40, IL-13, granulocyte colony-stimulating factor, monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein (MIP)-1a, MIP-1h, IFNa, tumor necrosis factor (TNF)-a, epidermal growth factor, vascular endothelial growth factor (VEGF), and TNF receptor II were found to be significantly higher in patients with resected high-risk melanoma compared with healthy controls. Bayesian Network algorithm classification of the data offered 90% sensitivity at 98% specificity with 96.5% of melanoma patients distinguished from healthy individuals. IFN-a2b therapy resulted in a significant decrease of serum levels of immunosuppressive and tumor angiogenic/ growth stimulatory factors (VEGF, epidermal growth factor, and hepatocyte growth factor) and increased levels of antiangiogenic IFN-g inducible protein 10 (IP-10) and IFN-a. Pretreatment levels of proinflammatory cytokines IL-1h, IL-1a, IL-6, TNF-a, and chemokines MIP-1a and MIP-1h were found to be significantly higher in the serum of patients with longer RFS values of 1to 5 and >5 years when compared with patients with shorter RFS of <1year.Conclusion: These data show that multiplexed analysis of serum biomarkers is useful for the evaluation of prognostic markers of clinical outcome and potential predictive markers of response to IFN-a2b in patients with high-risk operable melanoma.Melanoma is a potentially lethal malignancy that has shown an increase in incidence that exceeds all other solid tumors. It accounts for >79% of skin cancer -related deaths. Melanoma is surgically curable when discovered at early stages; however, once regional and systemic spread of the disease occurs, the prognosis is more ominous. Patients with localized nonulcerated primary melanoma of <1 mm Breslow depth (stage IA) at the time of diagnosis have an excellent prognosis, but those with primary melanoma of a Breslow depth >4 mm (stage IIB) or regional lymph node metastasis (stage III) have intermediate-to-high risk of relapse, and those with distant metastases have a median survival of 5 to 11 months (1 -6).
A panel of biomarkers may improve predictive performance over individual markers. Although many biomarker panels have been described for ovarian cancer, few studies used prediagnostic samples to assess the potential of the panels for early detection. We conducted a multisite systematic evaluation of biomarker panels using prediagnostic serum samples from the Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) screening trial.Using a nested case-control design, levels of 28 biomarkers were measured laboratory-blinded in 118 serum samples obtained before cancer diagnosis and 951 serum samples from matched controls. Five predictive models, each containing 6 to 8 biomarkers, were evaluated according to a predetermined analysis plan. Three sequential analyses were conducted: blinded validation of previously established models (step 1); simultaneous split-sample discovery and validation of models (step 2); and exploratory discovery of new models (step 3). Sensitivity, specificity, sensitivity at 98% specificity, and AUC were computed for the models and CA125 alone among 67 cases diagnosed within one year of blood draw and 476 matched controls. In step 1, one model showed comparable performance to CA125, with sensitivity, specificity, and AUC at 69.2%, 96.6%, and 0.892, respectively. Remaining models had poorer performance than CA125 alone. In step 2, we observed a similar pattern. In step 3, a model derived from all 28 markers failed to show improvement over CA125.Thus, biomarker panels discovered in diagnostic samples may not validate in prediagnostic samples; utilizing prediagnostic samples for discovery may be helpful in developing validated early detection panels.
Cancer stem cells (CSC) are thought to be responsible for tumor initiation and tumor regeneration after chemotherapy. Previously, we showed that chemotherapy of non–small cell lung cancer (NSCLC) cells lines can select for outgrowth of highly tumorigenic and metastatic CSCs. The high malignancy of lung CSCs was associated with an efficient cytokine network. In this study, we provide evidence that blocking stem cell factor (SCF)–c-kit signaling is sufficient to inhibit CSC proliferation and survival promoted by chemotherapy. CSCs were isolated from NSCLC cell lines as tumor spheres under CSC-selective conditions and their stem properties were confirmed. In contrast to other tumor cells, CSCs expressed c-kit receptors and produced SCF. Proliferation of CSCs was inhibited by SCF-neutralizing antibodies or by imatinib (Gleevec), an inhibitor of c-kit. Although cisplatin treatment eliminated the majority of tumor cells, it did not eliminate CSCs, whereas imatinib or anti-SCF antibody destroyed CSCs. Significantly, combining cisplatin with imatinib or anti-SCF antibody prevented the growth of both tumor cell subpopulations. Our findings reveal an important role for the SCF–c-kit signaling axis in self-renewal and proliferation of lung CSCs, and they suggest that SCF–c-kit signaling blockade could improve the antitumor efficacy of chemotherapy of human NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.