The availability of disease-specific induced pluripotent stem cells (iPSCs) offers a unique opportunity for studying and modeling the effects of specific gene defects on human liver development in vitro and for testing small molecules or other potential therapies for relevant liver disorders. Here we report, for the first time, the derivation of iPSCs by the retroviral transduction of Yamanaka's factors in serum and feeder-free culture conditions from liver-specific patients with tyrosinemia, glycogen storage disease, progressive familial hereditary cholestasis, and two siblings with Crigler-Najjar syndrome. Furthermore, they were differentiated into functional hepatocyte-like cells efficiently. These iPSCs possessed properties of human embryonic stem cells (hESCs) and were successfully differentiated into three lineages that resembled hESC morphology, passaging, surface and pluripotency markers, normal karyotype, DNA methylation, and differentiation. The hepatic lineage-directed differentiation showed that the iPSC-derived hepatic cells expressed hepatocyte-specific markers. Their functionality was confirmed by glycogen and lipid storage activity, secretion of albumin, alpha-fetoprotein, and urea, CYP450 metabolic activity, as well as LDL and indocyanin green uptake. Our results provide proof of principal that human liver-disease specific iPSCs present an exciting potential venue toward cell-based therapeutics, drug metabolism, human liver development and disease models for liver failure disorders.
Optimization and development of better defined culture methods for human embryonic and induced pluripotent stem cells (hESCs and hiPSCs) will provide an invaluable contribution to the field of regenerative medicine. However, one problem is the vulnerability of hESCs and hiPSCs to apoptosis that causes a low plating efficiency upon passaging. Herein, we have developed a novel hESCs and hiPSCs culture technique that uses ROCK inhibitor (ROCKi) Y-27632 (10 microM) in Matrigel-coated dishes in both serum- and feeder-free culture conditions. This increases plating efficiency during enzymatic and mechanical passaging as compared to its presence solely in culture medium. Under these conditions, hESCs (three lines) and hiPSCs (two lines) retain their typical morphology, a stable karyotype, express pluripotency markers and have the potential to differentiate into derivatives of all three germ layers after long-term culture. Real-time RT-PCR analysis of stemness-related integrins (alphaV, alpha6, and beta1) has demonstrated that their expression increases in the presence of ROCKi. Similar plating efficiencies have been obtained in both hESCs and hiPSCs with a lower concentration of Y-27632 (800 nM) and another ROCKi (HA-1077/Fasudil), thus ruling out the non-specific effects of Y-27632. These results show that addition of ROCKi in the extracellular matrix can increase the plating efficiency of hESCs and hiPSCs during passaging of clusters. This is due not only to an anti-apoptotic effect, but also to an increase in the ECM-cells interaction. Therefore, we believe this method will be useful for both current and future applications of these pluripotent stem cells.
This method is an effective cryopreservation procedure for single dissociated hESCs in feeder-free culture, which is also applicable for single dissociated hiPSCs using a ROCK inhibitor. The cloning efficiency of hiPSCs and hESCs improves when ROCK inhibitor is added both in Matrigel and in medium in comparison with conventional addition to medium. Therefore, we believe this method would be useful for current and future applications of the pluripotent stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.