Pulque is a traditional Mexican alcoholic beverage produced from the fermentation of the fresh sap known as aguamiel (mead) extracted from several species of Agave (maguey) plants that grow in the Central Mexico plateau. Currently, pulque is produced, sold and consumed in popular districts of Mexico City and rural areas. The fermented product is a milky white, viscous, and slightly acidic liquid beverage with an alcohol content between 4 and 7° GL and history of consumption that dates back to pre-Hispanic times. In this contribution, we review the traditional pulque production process, including the microbiota involved in the biochemical changes that take place during aguamiel fermentation. We discuss the historical relevance and the benefits of pulque consumption, its chemical and nutritional properties, including the health benefits associated with diverse lactic acid bacteria with probiotic potential isolated from the beverage. Finally, we describe the actual status of pulque production as well as the social, scientific and technological challenges faced to preserve and improve the production of this ancestral beverage and Mexican cultural heritage.
The production of aromatic amino acids using fermentation processes with recombinant microorganisms can be an advantageous approach to reach their global demands. In addition, a large array of compounds with alimentary and pharmaceutical applications can potentially be synthesized from intermediates of this metabolic pathway. However, contrary to other amino acids and primary metabolites, the artificial channelling of building blocks from central metabolism towards the aromatic amino acid pathway is complicated to achieve in an efficient manner. The length and complex regulation of this pathway have progressively called for the employment of more integral approaches, promoting the merge of complementary tools and techniques in order to surpass metabolic and regulatory bottlenecks. As a result, relevant insights on the subject have been obtained during the last years, especially with genetically modified strains of Escherichia coli. By combining metabolic engineering strategies with developments in synthetic biology, systems biology and bioprocess engineering, notable advances were achieved regarding the generation, characterization and optimization of E. coli strains for the overproduction of aromatic amino acids, some of their precursors and related compounds. In this paper we review and compare recent successful reports dealing with the modification of metabolic traits to attain these objectives.Electronic supplementary materialThe online version of this article (doi:10.1186/s12934-014-0126-z) contains supplementary material, which is available to authorized users.
BackgroundShikimic acid (SA) is utilized in the synthesis of oseltamivir-phosphate, an anti-influenza drug. In this work, metabolic engineering approaches were employed to produce SA in Escherichia coli strains derived from an evolved strain (PB12) lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS-) but with capacity to grow on glucose. Derivatives of PB12 strain were constructed to determine the effects of inactivating aroK, aroL, pykF or pykA and the expression of plasmid-coded genes aroGfbr, tktA, aroB and aroE, on SA synthesis.ResultsBatch cultures were performed to evaluate the effects of genetic modifications on growth, glucose consumption, and aromatic intermediate production. All derivatives showed a two-phase growth behavior with initial high specific growth rate (μ) and specific glucose consumption rate (qs), but low level production of aromatic intermediates. During the second growth phase the μ decreased, whereas aromatic intermediate production reached its maximum. The double aroK- aroL- mutant expressing plasmid-coded genes (strain PB12.SA22) accumulated SA up to 7 g/L with a yield of SA on glucose of 0.29 mol/mol and a total aromatic compound yield (TACY) of 0.38 mol/mol. Single inactivation of pykF or pykA was performed in PB12.SA22 strain. Inactivation of pykF caused a decrease in μ, qs, SA production, and yield; whereas TACY increased by 33% (0.5 mol/mol).ConclusionsThe effect of increased availability of carbon metabolites, their channeling into the synthesis of aromatic intermediates, and disruption of the SA pathway on SA production was studied. Inactivation of both aroK and aroL, and transformation with plasmid-coded genes resulted in the accumulation of SA up to 7 g/L with a yield on glucose of 0.29 mol/mol PB12.SA22, which represents the highest reported yield. The pykF and pykA genes were inactivated in strain PB12.SA22 to increase the production of aromatic compounds in the PTS- background. Results indicate differential roles of Pyk isoenzymes on growth and aromatic compound production. This study demonstrated for the first time the simultaneous inactivation of PTS and pykF as part of a strategy to improve SA production and its aromatic precursors in E. coli, with a resulting high yield of aromatic compounds on glucose of 0.5 mol/mol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.