In recent decades several authors have suggested that bilinguals exhibit enhanced cognitive control as compared to monolinguals and some proposals suggest that this main difference between monolinguals and bilinguals is related to bilinguals' enhanced capacity of inhibiting irrelevant information. This has led to the proposal of the so-called bilingual advantage in inhibitory skills. However, recent studies have cast some doubt on the locus and generality of the alleged bilingual advantage in inhibitory skills. In the current study we investigated inhibitory skills in a large sample of 252 monolingual and 252 bilingual children who were carefully matched on a large number of indices. We tested their performance in a verbal Stroop task and in a nonverbal version of the same task (the number size-congruency task). Results were unequivocal and showed that bilingual and monolingual participants performed equally in these two tasks across all the indices or markers of inhibitory skills explored. Furthermore, the lack of differences between monolingual and bilingual children extended to all the age ranges tested and was not modulated by any of the independent factors investigated. In light of these results, we conclude that bilingual children do not exhibit any specific advantage in simple inhibitory tasks as compared to monolinguals.
Language is a uniquely human ability that evolved at some point in the roughly 6,000,000 years since human and chimpanzee lines diverged. Even in the most linguistically impoverished environments, children naturally develop sophisticated language systems. In contrast, reading is a learnt skill that does not develop without intensive tuition and practice. Learning to read is likely to involve ontogenic structural brain changes, but these are nearly impossible to isolate in children owing to concurrent biological, environmental and social maturational changes. In Colombia, guerrillas are re-integrating into mainstream society and learning to read for the first time as adults. This presents a unique opportunity to investigate how literacy changes the brain, without the maturational complications present in children. Here we compare structural brain scans from those who learnt to read as adults (late-literates) with those from a carefully matched set of illiterates. Late-literates had more white matter in the splenium of the corpus callosum and more grey matter in bilateral angular, dorsal occipital, middle temporal, left supramarginal and superior temporal gyri. The importance of these brain regions for skilled reading was investigated in early literates, who learnt to read as children. We found anatomical connections linking the left and right angular and dorsal occipital gyri through the area of the corpus callosum where white matter was higher in late-literates than in illiterates; that reading, relative to object naming, increased the interhemispheric functional connectivity between the left and right angular gyri; and that activation in the left angular gyrus exerts top-down modulation on information flow from the left dorsal occipital gyrus to the left supramarginal gyrus. These findings demonstrate how the regions identified in late-literates interact during reading, relative to object naming, in early literates.
Bilinguals have been shown to outperform monolinguals in a variety of tasks that do not tap into linguistic processes. The origin of this bilingual advantage has been questioned in recent years. While some authors argue that the reason behind this apparent advantage is bilinguals' enhanced executive functioning, inhibitory skills and/or monitoring abilities, other authors suggest that the locus of these differences between bilinguals and monolinguals may lie in uncontrolled factors or incorrectly matched samples. In the current study we tested a group of 180 bilingual children and a group of 180 carefully matched monolinguals in a child-friendly version of the ANT task. Following recent evidence from similar studies with children, our results showed no bilingual advantage at all, given that the performance of the two groups in the task and the indices associated with the individual attention networks were highly similar and statistically indistinguishable.
This functional magnetic resonance imaging study compared the neuronal implementation of word and pseudoword processing during two commonly used word recognition tasks: lexical decision and reading aloud. In the lexical decision task, participants made a finger-press response to indicate whether a visually presented letter string is a word or a pseudoword (e.g., "paple"). In the reading-aloud task, participants read aloud visually presented words and pseudowords. The same sets of words and pseudowords were used for both tasks. This enabled us to look for the effects of task (lexical decision vs. reading aloud), lexicality (words vs. nonwords), and the interaction of lexicality with task. We found very similar patterns of activation for lexical decision and reading aloud in areas associated with word recognition and lexical retrieval (e.g., left fusiform gyrus, posterior temporal cortex, pars opercularis, and bilateral insulae), but task differences were observed bilaterally in sensorimotor areas. Lexical decision increased activation in areas associated with decision making and finger tapping (bilateral postcentral gyri, supplementary motor area, and right cerebellum), whereas reading aloud increased activation in areas associated with articulation and hearing the sound of the spoken response (bilateral precentral gyri, superior temporal gyri, and posterior cerebellum). The effect of lexicality (pseudoword vs. words) was also remarkably consistent across tasks. Nevertheless, increased activation for pseudowords relative to words was greater in the left precentral cortex for reading than lexical decision, and greater in the right inferior frontal cortex for lexical decision than reading. We attribute these effects to differences in the demands on speech production and decision-making processes, respectively.
Prior research suggests that predictive inferences take time to construct on-line. The present study examines the relative contribution of time available during and after reading an inducing context. In six experiments, we manipulated the presentation rate of the context and the delay between the onset of the last word in the context and a target word. A predicting, or a control, sentence context was followed by a target word, which represented the predicted event or an unlikely event. The results indicated that increasing the time available during reading ofthe context improved comprehension of explicit information, but it did not affect construction of inferences. In contrast, increasing the delay at the end of the context did not affect explicit comprehension, but it enhanced the probability of inferences, as revealed by shorter latencies in naming the predictable target word after the inducing context, relative to the control context. These fmdings show that readers defer making predictive inferences until 1 sec after the sentence context has been read, regardless of the time available when they are processing the context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.