Within the context of the E-TEST (Einstein Telescope EMR Site & Technology) project, Fraunhofer ILT develops thulium-and holmium-based seed sources and fiber lasers at app. 2 µm wavelength with highest demands on linewidth and stability for usage in a third-generation gravitational wave detector, the Einstein telescope. To fulfill the requirements, we develop a seed laser and a multi-stage fiber amplifier, consisting of holmium-doped fibers. Within this paper, we present our current laser concept and the first results of our dual-stage holmium-doped fiber amplifier stage. We achieve a low linewidth (< 2 MHz) output power of more than 5 W at a wavelength of 2095 nm. By using our in-house developed fiber laser simulation, we show that the efficiency of our amplifier is currently limited by pair induced quenching and the potential for further power scaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.