Pregnenolone is considered the inactive precursor of all steroid hormones and its potential functional effects have been largely neglected. The administration of the main active principle of Cannabis sativa (marijuana) Δ9-tetrahydrocannabinol (THC) substantially increases the synthesis of pregnenolone in the brain via the activation of type-1 cannabinoid (CB1) receptor. Pregnenolone then, acting as a signaling specific inhibitor of the CB1 receptor, reduces several effects of THC. This negative feedback mediated by pregnenolone reveals an unknown paracrine/autocrine loop protecting the brain from CB1 receptor over-activation that could open an unforeseen novel approach for the treatment of cannabis intoxication and addiction.
A functional balance between excitatory and inhibitory control over dopamine (DA)-dependent behavioral and neurochemical effects of cocaine is afforded by the serotonin2C receptor (5-HT2CR) located within the ventral tegmental area and the nucleus accumbens (NAc). The 5-HT2CR located in the medial prefrontal cortex (mPFC) has also been shown to inhibit cocaine-induced behaviors perhaps through inhibition of DA function in the NAc. Using in vivo microdialysis in halothane-anesthetized rats, we tested this hypothesis by assessing the influence of mPFC 5-HT2CRs on cocaine-induced DA outflow in the NAc shell. Intra-mPFC injection of the 5-HT2CR agonist Ro 60-0175 at 5 µg/0.2 µl, but not 1 µg/0.2 µl, potentiated the increase in accumbal DA outflow induced by the intraperitoneal administration of 10 mg/kg of cocaine. Conversely, cocaine-induced accumbal DA outflow was significantly reduced by the intra-mPFC injection of the selective 5-HT2CR antagonist SB 242084 (0.5 µg/0.2 µl) or SB 243213 (0.5 and 1 µg/0.2 µl). These results show that mPFC 5-HT2CRs exert a positive control over cocaine-induced accumbal DA outflow. Observations further support the idea that the overall action of central 5-HT2CRs on accumbal DA output is dependent on the functional balance among different 5-HT2CR populations located within the mesocorticoaccumbens system, and that 5-HT2CRs can modulate DA-dependent behaviors independently of changes of accumbal DA release itself.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.