Although both of the small Rho guanosine triphosphatases (GTPases) Rac1 and Rac2 have been demonstrated to play a role in chemotaxis, the precise and possible unique roles performed by each of these 2 Rac isoforms in neutrophil chemotaxis have not been defined. To elucidate the specific roles of Rac1 and Rac2 in neutrophils during the process of chemotaxis, we generated mice deficient in Rac1, Rac2, or in both Rac1 and Rac2 in cells of myeloid lineage including neutrophils by mating Rac2 null mice with mice carrying a conditional allele for Rac1 and expressing the Cre recombinase downstream of a specific myeloid promoter, lysozyme M. We demonstrate here that although Rac1 null neutrophils display normal chemokinesis, they are unable to migrate toward the source of the chemoattractant. By contrast, Rac2 null neutrophils can orient toward the chemoattractant source but are unable to migrate efficiently. We show that Rac1 is essential for gradient detection and orientation toward the chemoattractant source through spatially constrained regulation of phosphoinositol-3,4,5-trisphosphate (PIP 3 ) and Akt in the leading edge and confirm that Rac2 is the primary regulator of actin assembly providing the molecular motor for neutrophil translocation during chemotaxis. (Blood.
Abstract-Osteopontin (OPN) is a multifunctional cytokine that is strongly expressed in healing wounds and fibrotic lesions, both of which are characterized by the formation of myofibroblasts. We examined the role of OPN in myofibroblast differentiation induced by the profibrotic cytokine transforming growth factor-1. In cultured cardiac or dermal fibroblasts treated with transforming growth factor-1, there was a 2-to 5-fold increase in the expression of the myofibroblast markers ␣-smooth muscle actin and extradomain A fibronectin but no significant increase of these proteins in OPN-null fibroblasts. Phalloidin staining for actin filaments and immunostaining for ␣-smooth muscle actin and focal adhesion proteins showed reduced stress fibers, focal adhesions, and lamellipodia in OPN-null fibroblasts compared with wild-type cells. OPN-null fibroblasts exhibited 40% to 60% less spreading, 50% less resistance to detachment by shear force, and a Ϸ3-fold reduction in collagen gel contraction. These defects were partially rescued by ectopic expression of OPN. Mass spectrometric analysis of proteins in focal adhesions formed on collagen type I beads revealed an enrichment of HMGB1 protein in wild-type cells, whereas HMGB1 was not detected in OPN-null cells. Treatment of wild-type cells with small interfering RNA to knock down OPN reduced transforming growth factor-1-induced ␣-smooth muscle actin and HMGB1 to levels observed in OPN-null cells. These studies demonstrate that OPN is required for the differentiation and activity of myofibroblasts formed in response to the profibrotic cytokine transforming growth factor-1. (Circ Res. 2008;102:319-327.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.