Periphyton is an important food source at the base of freshwater ecosystems that tends to bioconcentrate trace elements making them trophically available. The potential for arsenic-a trace element of particular concern due to its widespread occurrence, toxicity, and carcinogenicity-to bioconcentrate in periphyton and thus be available to benthic grazers is less well characterized. To better understand arsenate bioaccumulation dynamics in lotic food webs, we used a radiotracer approach to characterize accumulation in periphyton and subsequent trophic transfer to benthic grazers. Periphyton bioconcentrated As between 3,200-9,700-fold (dry weight) over 8 days without reaching steady state, suggesting that periphyton is a major sink for arsenate. However, As-enriched periphyton as a food source for the mayfly Neocloeon triangulifer resulted in negligible As accumulation in a full lifecycle exposure. Additional studies estimate dietary assimilation efficiency in several primary consumers ranging from 22% in the mayfly N. triangulifer to 75% in the mayfly Isonychia sp. X-ray fluorescence mapping revealed that As was predominantly associated with iron oxides in periphyton. We speculate that As adsorption to Fe in periphyton may play a role in reducing dietary bioavailability. Together, these results suggest that trophic movement of As in lotic food webs is relatively low, though species differences in bioaccumulation patterns are important.
The National Institute of Environmental Health Sciences Superfund Research Program (SRP) funds diverse transdisciplinary research to understand how hazardous substances contribute to disease. SRP research focuses on how to prevent these exposures by promoting problem-based, solution-oriented research. SRP's mandate areas encompasses broad biomedical and environmental science and engineering research efforts and, when combined with research translation, community engagement, training, and data science, offers broad expertise and unique perspectives directed at a specific big picture question. The purpose of this commentary is to adapt a systems approach concept to SRP research to accommodate the complexity of a scientific problem. The SRP believes a systems approach offers a framework to understand how scientists can work together to integrate diverse fields of research to prevent or understand environmentally-influenced human disease by addressing specific questions that are part of a larger perspective. Specifically, within the context of the SRP, a systems approach can elucidate the complex interactions between factors that contribute to or protect against environmental insults. Leveraging a systems approach can continue to advance SRP science while building the foundation for researchers to address difficult emerging environmental health problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.