Temperature measurements ranging from a few degrees to a few hundreds of Kelvin are of great interest in the fields of nanomedicine and nanotechnology. Here, we report a new ratiometric luminescent thermometer using thermally excited state absorption of the Eu(3+) ion. The thermometer is based on the simple Eu(3+) energy level structure and can operate between 180 and 323 K with a relative sensitivity ranging from 0.7 to 1.7% K(-1). The thermometric parameter is defined as the ratio between the emission intensities of the (5)D0 → (7)F4 transition when the (5)D0 emitting level is excited through the (7)F2 (physiological range) or (7)F1 (down to 180 K) level. Nano and microcrystals of Y2O3:Eu(3+) were chosen as a proof of concept of the operational principles in which both excitation and detection are within the first biological transparent window. A novel and of paramount importance aspect is that the calibration factor can be calculated from the Eu(3+) emission spectrum avoiding the need for new calibration procedures whenever the thermometer operates in different media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.