This work sought to integrate bioleaching and chemical leaching as a cost-effective process to treat zinc sulphides. The continuous bioleaching of a sphalerite concentrate, assaying 51.4% Zn, 1.9% Pb, 31.8% S and 9.0% Fe with mesophile iron and sulphur-oxidizing bacteria followed by chemical leaching of the bioleaching residue were assessed. In the bioleaching step, the first reactor was used to produce Fe(III) concentrations as high as 20 g/L. This solution was fed to the subsequent bioleaching reactors to oxidize sphalerite. It was possible to achieve 30% zinc extraction for 70 h residence time. In chemical leaching experiments, carried out with the residue of the bioleaching step, the effects Fe total and acidity on zinc extraction were studied. It was noticed that Fe(III) concentrations over 12 g/L did not affect zinc recoveries. Furthermore, the higher the acidity, the larger the zinc recovery, for experiments carried out up to 181 g/L sulphuric acid. The results have demonstrated that it is possible to devise a new process capable of achieving 96% zinc extraction, similarly to the conventional roasting-leaching-electrolysis process.
a b s t r a c tThe effect of temperature on nickel sulfide bioleaching was studied in the presence of mesophile (Acidithiobacillus ferrooxidans) and moderate thermophile (Sulfobacillus thermosulfidooxidans) strains and the results were discussed in terms of sulfide dissolution thermodynamics (Eh-pH diagrams) and kinetics (cyclic voltammetry). It was observed that in the pH range 1.8-2.0 the highest nickel dissolution was achieved which reached 50% for mesophiles and over 80% for moderate thermophiles. External ferrous iron addition had no effect on the metal dissolution at 34°C, but adversely affected nickel leaching at higher temperatures. The best outcomes were accomplished with low FeSO 4 additions (2.5 g/L) at 50°C. Pyrrhotite dissolution avoided the need for external iron addition, providing Fe 2+ concentrations as high as 7 g/L during bioleaching, which supports bacterial growth. Eh-pH diagrams for pentlandite and pyrrhotite show a negligible effect of temperature on the stability field of each sulfide whilst cyclic voltammetry indicated that temperature has the strongest influence on pyrrhotite oxidation. The latter along with a rapid increase in solution potential (Eh) explains the higher and faster extraction observed with S. thermosulfidooxidans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.