The aim of the paper is to assess nitric oxide (NO) production during aerobic training and its role on the progression of diabetic nephropathy in rats. Induction of diabetes mellitus (DM) was achieved in adult male Wistar rats with streptozotocin. Half of the animals underwent training on a treadmill and the others (sedentary) stayed on a turned-off treadmill for the same period according to the following groups: sedentary control (CTL + SE); training control (CTL + EX); sedentary diabetic (DM + SE); and training diabetic (DM + EX) (n = 9 for all groups). The training on treadmill was carried out at a work rate of 16 m/min, 60 min/d, 5 d/week for eight weeks. Before and after the exercises, rats were placed in individual metabolic cages with standard chow and water ad libitum, for 24-h urine collection, followed by three hours' fasting blood sample withdrawal from the retro-orbital plexus, under anesthesia. Diabetic animals showed reduction of body weight, creatinine and urea depurations and NO excretion, increased blood glucose concentrations, albuminuria and thiobarbituric acid reactive substance (TBARS) excretion, when compared with the respective controls. All these alterations induced by DM were attenuated in the DM + EX versus DM + SE group. Analysis of insulin concentrations at the end of the protocol showed no significant change between the DM + SE and DM + EX groups. In conclusion, our data show that a routine physical exercise resulted in a better control of glycemia with an increased NO bioavailability and oxidative stress control, associated with an amelioration of renal function. We suggest aerobic training and the control of oxidative and nitrosative stress as useful non-pharmacological tools to delay the progression of diabetic nephropathy.
This study aimed at assessing the effects of Kefir, a probiotic fermented milk, on oxidative stress in diabetic animals. The induction of diabetes was achieved in adult male Wistar rats using streptozotocin (STZ). The animals were distributed into four groups as follows: control (CTL); control Kefir (CTLK); diabetic (DM) and diabetic Kefir (DMK). Starting on the 5th day of diabetes, Kefir was administered by daily gavage at a dose of 1.8 mL/day for 8 weeks. Before and after Kefir treatment, the rats were placed in individual metabolic cages to obtain blood and urine samples to evaluate urea, creatinine, proteinuria, nitric oxide (NO), thiobarbituric acid reactive substances (TBARS) and C-reactive protein (CRP). After sacrificing the animals, the renal cortex was removed for histology, oxidative stress and NOS evaluation. When compared to CTL rats, DM rats showed increased levels of glycemia, plasmatic urea, proteinuria, renal NO, superoxide anion, TBARS, and plasmatic CRP; also demonstrated a reduction in urinary urea, creatinine, and NO. However, DMK rats showed a significant improvement in most of these parameters. Despite the lack of differences observed in the expression of endothelial NO synthase (eNOS), the expression of inducible NO synthase (iNOS) was significantly lower in the DMK group when compared to DM rats, as assessed by Western blot analysis. Moreover, the DMK group presented a significant reduction of glycogen accumulation within the renal tubules when compared to the DM group. These results indicate that Kefir treatment may contribute to better control of glycemia and oxidative stress, which is associated with the amelioration of renal function, suggesting its use as a non-pharmacological adjuvant to delay the progression of diabetic complications.
Previous studies in our laboratory showed that N-acetylcysteine supplementation or aerobic training reduced oxidative stress and the progression of diabetic nephropathy in rats. The P2X7 receptor is up-regulated in pathological conditions, such as diabetes mellitus. This up-regulation is related to oxidative stress and induces tissue apoptosis or necrosis. The aim of the present study is to assess the role of P2X7 receptor in the kidneys of diabetic rats submitted to aerobic training or N-acetylcysteine supplementation. Diabetes was induced in male Wistar rats by streptozotocin (60 mg/kg, i.v.) and the training was done on a treadmill; N-acetylcysteine was given in the drinking water (600 mg/L). By confocal microscopy, as compared to control, the kidneys of diabetic rats showed increased P2×7 receptor expression and a higher activation in response to 2′(3′)-O-(4-benzoylbenzoyl) adenosine5'–triphosphate (specific agonist) and adenosine triphosphate (nonspecific agonist) (all p<0.05). All these alterations were reduced in diabetic rats treated with N-acetylcysteine, exercise or both. We also observed measured proteinuria and albuminuria (early marker of diabetic nephropathy) in DM groups. Lipoperoxidation was strongly correlated with P2X7 receptor expression, which was also correlated to NO•, thus associating this receptor to oxidative stress and kidney lesion. We suggest that P2X7 receptor inhibition associated with the maintenance of redox homeostasis could be useful as coadjuvant treatment to delay the progression of diabetic nephropathy.
The diabetes mellitus (DM) induces several changes, with substantial increase of reactive oxygen species (ROS). The ROS cause damage to systemic and renal microvasculature, which could be one of the mechanisms involved in the development of diabetic nephropathy (DN). The ROS modulate other substances like the nitric oxide (NO), a vasodilator with important role in the renal function. N-acetylcysteine (NAC) is an antioxidant that acts replenishing intracellular cysteine levels, which is essential for glutathione formation. The aim of this study was to evaluate the effect of early or late NAC treatment on oxidative/nitrosative stress in DN progression. All rats were submitted to unilateral nephrectomy and diabetes was induced with streptozotocin. The animals were allocated into six groups: controls that received water (CTL) or NAC (CTL + NAC); diabetic groups that received early or late, water (DM-E; DM-L) or NAC (DM + NAC-E; DM + NAC-L), started on 5th day (early) or 4th week (late) after diabetes induction, during 8 weeks. After NAC treatment, the rats were placed in individual metabolic cages to obtain urine and blood samples for analysis of metabolic profile, renal function, thiobarbituric acid reactive substances (TBARS) and NO. At the end of the protocol, the renal cortex was removed for TBARS, NOS evaluation, antioxidants markers and histology. The DM-E group compared to CTL showed a significant increase in glycemia and proteinuria and impaired renal function; there was a significant increase of TBARS in plasma, urine and renal tissue, and also a significant decrease in plasma NO, which were reverted after early NAC treatment. The eNOS was decreased and iNOS was increased in DM-E vs. CTL, p < 0.05. The early NAC treatment in DM rats reduced proteinuria, creatinine, urea, TBARS and iNOS and, increased creatinine clearance, NO and eNOS, increasing significantly the antioxidant defenses, promoting elevated catalase and glutathione compared to DM-E group, all p < 0.05. The late NAC treatment in diabetic rats vs.DM-E showed reduced proteinuria and TBARS excretion and higher values of creatinine clearance and NO, all statistically significant. Histological analysis of the animals in DM-E or DM-L showed significant tubular changes with degeneration and vacuolization in tubular cells, dilated tubular lumen, intense glycosidic degeneration, and discreet mesangial expansion with interstitial fibrosis area. The DM + NAC-E group showed moderate glycosidic degeneration, however, did not present tubular degeneration or fibrosis. The DM + NAC-L group showed severe glycosidic degeneration, moderate tubular cell degeneration, light and focal dilatation of the tubules, with no fibrosis. Our study showed that NAC protected the diabetic rats against renal injury, probably due to the control of oxidative stress via recovery of the NO bioavailability, showing that early NAC was more effective than late treatment. All these data suggest that NAC may be useful in the adjuvant treatment in a safe way, in the early phase of the disea...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.