This paper presents the results from an experimental study on the actual behavior of header end-plate connections. To better understand the hysteretic behavior of these connections in terms of the stiffness and the strength, sixteen specimens were considered and subjected to cyclic loads. The effect of some parameters such as thickness of the header end-plate, depth of the connection and the number of bolt rows on the behavior of header end-plate connections has been investigated by the help of experimental tests and finite element (FE) analyses. The moment-rotation relations of the connections governed by three parameters such as initial stiffness, moment capacity and rotation capacity were obtained. Results revealed that the moment capacity increases with the increase in end-plate thickness and depth of connection. However, for the equal connection depth, increasing the number of bolt rows has not influenced the connection behavior in any noticeable way.
In seismically active regions such as Turkey, the context of the nonlinearity provided by a building is based on the behaviors of structural components; beams, columns and their connections constituting the seismic force resisting system of the structure. Of these members, beam-to-column connections can play a considerably important role even if they have a capability of limited stiffness and flexural strength. Structural steel connections are mainly classified as a pinned or a moment connection. However, some beam-to-column connections having limited stiffness and flexural strength, which are called semi-rigid connections such as header end-plate connections designed so as to transmit only shear forces, can be characterized by moment-rotation relationship. This paper investigates the behavior of header end-plate connections using finite element (FE) modeling. The FE models include material, geometrical and contact nonlinearities. FE modeling technique was first verified through the test results of the experimental research performed by Aggarwal (1990). Then the effect of header end-plate thickness upon moment-rotation relationship was investigated. According to the analyses results, in addition to shear stresses, axial tensile stresses have been observed to occur in the bolts at the tension side and thickness of the header end-plate and beam web play a governing role in the development of initial rotational stiffness and the flexural strength of header end-plate connections.
This paper presents the influence of gravity framing on the collapse risk of steel frame buildings with perimeter special moment frames (SMFs) designed in Turkey. For this, fourand eight-story buildings have been designed considering the related current specifications and codes. Header end-plate connections are used for the beam-to-column joints of the gravity frame system. A nonlinear analytical model that simulates the hysteretic behavior of header end-plate connections is calibrated with past experimental data. Nonlinear static pushover analysis (NSPA) and nonlinear response history analyses (NRHAs) were implemented for both four-story and eight-story SMFs with and without the gravity framing to quantify their collapse performance and monitor the system-level seismic response of the building through collapse. The advantage of presence of the gravity framing is investigated and differences in structural responses between the models are also examined. When the models were excited by different ground motions, median responses of the detailed models showed an increase in lateral force carrying capacity and a decrease in first-story drift demand, compared to the nonlinear static pushover analyses results. Furthermore, the results demonstrate that gravity frames in a structure profoundly decrease the possibility of collapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.