This research aims to investigate the relationship between the solvent retention capacity (SRC) test and quality assessment of hard red spring (HRS) wheat flour samples obtained from 10 HRS cultivars grown at six locations in North Dakota. The SRC values were significantly (P < 0.05) correlated with flour chemical components (protein, gluten, starch, and damaged starch contents, except arabinoxylan); with farinograph parameters (stability [FST], water absorption, peak time [FPT], and quality number); and with breadmaking parameters (baking water absorption [BWA], bread loaf volume [BLV], and symmetry). Differences in locations and cultivars contributed significantly to variation in quality parameters and SRC values. Suitability of SRC parameters for discriminatory analysis of HRS wheat flour is greatly influenced by molecular weight distribution (MWD) of SDS‐unextractable proteins. SRC parameters, except for sucrose SRC, showed significant (P < 0.01) and positive correlations with high‐molecular‐weight (HMW) polymeric proteins in SDS‐unextractable fractions, whereas only lactic acid SRC exhibited significant (P < 0.01) correlations with low‐molecular‐weight polymeric proteins. HMW polymeric proteins also exhibited positive associations with FPT, FST, BWA, and BLV. The discrepant variation in association of SRC parameters with respect to MWD of SDS‐unextractable proteins could improve segregation of HRS wheat flour samples for quality.
Massive industrialization and urbanization of civilization during the last few decades have made a thrust in heavy metal pollution in various water bodies. In past, various kinds of conventional metal ion remediation technologies, such as cementation, osmosis, reverse osmosis, ultrafiltration, etc., have been practised. However, most of these technologies are quite expensive, and lead to the generation of secondary chemical sludge. However, biosorption of heavy metal ions is significantly inexpensive and an eco-friendly technology. Among the series of heavy metals, zinc has gained the significant interest due to its toxicity and easy availability in water bodies. Biosorption of zinc in liquid phase by living, nonliving, conventional and non-conventional biosorbents has been practised extensively in the past. This literature review focuses on the recent trends practised in the field of biosorption of zinc from liquid phase. The present work provides deep insight into various aspects of biosorption of zinc by different mechanisms of biosorption, bioaccumulation, isotherm, kinetic and mechanistic modeling. An exhaustive comparison among different sorts of biomasses has also been given in the present work to enlist all the milestones of biosorption.
Camel bone was demineralized through HCl acidulation process at different concentrations (0.0%, 1.5%, 3.0%, and 6.0%) over 1-5 days. The level of demineralization was acid concentration and soaking time dependent. Highest demineralization (62.0%) was recorded in bone sample treated with 6.0% dilute acid for 5 days. Energy dispersive X-ray spectroscopy (EDX) elemental analysis revealed reduction in Ca and increase in N and H, while O remains unaffected. Particulate characteristics by scanning electron microscope showed an increased surface roughness of bone after demineralization. Fourier transform infrared (FT-IR) analysis of ossein depicted the presence of functional group similar to that of bone protein (collagen). Statistical optimization by central composite design (CCD) revealed a significant quadratic model for optimum values of extraction temperature, pH, and extraction time. The highest gelatin yield from camel bone was 23.66% at optimum extraction condition (71.87°C, pH 5.26, and 2.58 h) and the bloom was 205.74 g. Camel bone is suitable for production of gelatin with good potentials in food and nonfood applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.