Chronic hyperglycaemia (an abnormally high glucose concentration in the blood) resulting from defects in insulin secretion/action, or both, is the major hallmark of diabetes in which it is known to be involved in the progression of the condition to different complications that include diabetic neuropathy. Diabetic neuropathy (diabetes-induced nerve damage) is the most common diabetic complication and can be devastating because it can lead to disability. There is an increasing body of evidence associating diabetic neuropathy with oxidative stress. Oxidative stress results from the production of oxygen free radicals in the body in excess of its ability to eliminate them by antioxidant activity. Antioxidants have different mechanisms and sites of actions by which they exert their biochemical effects and ameliorate nerve dysfunction in diabetes by acting directly against oxidative damage. This review will examine different strategies for managing diabetic neuropathy which rely on exogenous antioxidants.
All forms of life maintain a reducing environment (homeostasis) within their cells. Perturbations in the normal redox state can lead to an oxidative environment which has deleterious effects, especially in health. In biological systems, metabolic activities are dependent mainly on mitochondrial oxidative phosphorylation, a metabolic pathway that uses energy released by the oxidation of nutrients to produce ATP. In the process of oxidative phosphorylation, electrons are transferred from electron donors to electron acceptors such as oxygen in redox reactions and often results to the generation of reactive species. Reactive oxygen species consist of a class of radical and non-radical oxygen derivatives. The imbalance between the reactive oxygen species and antioxidant defence systems leads to oxidative burden and hence, damage biological molecules. Antioxidants help to prevent or fix the deleterious effects of reactive species. Sulfur is an important element in biological systems. This atom is usually integrated into proteins as the redox-active cysteine residue and in molecules such as glutathione, thioredoxin and glutaredoxin which are vital antioxidant molecules and are therefore essential for life. This review covers the role of sulfur containing antioxidant systems in oxidative environments.
Diabetes mellitus is a metabolic disease that can lead to high morbidity, mortality and long-term complications. Available treatment strategies, which are mainly based on treating hyperglycemia, with insulin and other pharmacological agents are not completely efficient and can even lead to development of unwanted side effects. Scientific evidence suggests that bioactive compounds from teas and other plant-based foods, which are known source of natural antioxidants, could be an attractive strategy to preferentially treat and manage type 2 diabetes mellitus (T2DM) and thus, have significant therapeutic implications. In this review, we attempt an in-depth analysis and discussion of the current progress in our understanding of the antidiabetic potential of two commercialized South Africa herbal tisanes—Rooibos and Honeybush and their polyphenols.
Metabolomics is a branch of ‘omics’ sciences that utilises a couple of analytical tools for the identification of small molecules (metabolites) in a given sample. The overarching goal of metabolomics is to assess these metabolites quantitatively and qualitatively for their diagnostic, therapeutic, and prognostic potentials. Its use in various aspects of life has been documented. We have also published, howbeit in animal models, a few papers where metabolomic approaches were used in the study of metabolic disorders, such as metabolic syndrome, diabetes, and obesity. As the goal of every research is to benefit humankind, the purpose of this review is to provide insights into the applicability of metabolomics in medicine vis-à-vis its role in biomarker discovery for disease diagnosis and management. Here, important biomarkers with proven diagnostic and therapeutic relevance in the management of disease conditions, such as Alzheimer’s disease, dementia, Parkinson’s disease, inborn errors of metabolism (IEM), diabetic retinopathy, and cardiovascular disease, are noted. The paper also discusses a few reasons why most metabolomics-based laboratory discoveries are not readily translated to the clinic and how these could be addressed going forward.
AMP-activated protein kinase (AMPK) is known to regulate both glucose and lipid metabolism, which play vital roles in the development of metabolic syndrome. One way of regulating AMPK is through hormonal activation using adiponectin. Patients diagnosed with type-2 diabetes (T2D) and obesity exhibit low adiponectin concentration levels in their blood. Moreover, studies have also shown that inflammatory processes play a significant role in the etiology of these metabolic diseases. In this study, the long-term effects of neonatal intake of oleanolic acid (OA) on the AMPK gene, genes associated with glucose transport and lipid metabolism, adiponectin levels, and inflammatory biomarkers in rats fed with a high fructose diet were investigated. Seven day old pups were randomly divided into five groups and treated as follows; 0.5% dimethylsulphoxide v/v in distilled water vehicle control (CON), oleanolic acid (OA, 60 mg/kg), high fructose diet (HF, 20% w/v), high fructose diet combined with oleanolic acid (HF+OA), and high fructose diet combined with metformin (HF+MET, 500 mg/kg). The treatments were administered once daily until day 14. The rats were then weaned at day 21 and fed standard rat chow and had ad libitum access to plain drinking water until day 112. The quantitative polymerase chain reaction (qPCR) was used to analyze the gene expressions of AMPK, Glut-4, Cpt-1, AdipoR1, AdipoR2, TNF-α, and IL-6 in the skeletal muscles. Bio-Plex Pro magnetic bead-based assay was used to measure plasma levels of inflammatory markers (TNF-α, IL-6, VEGF, and MCP-1) while ELISA kits were used to measure adiponectin concentration in blood plasma. The results obtained in this study showed that neonatal supplementation with OA significantly increased AMPK gene expression approximately ~4-fold in OA fed rats compared to those that were fed with HF alone. In addition, glut-4 gene expression was also significantly higher in the OA treatment group compared to all the other experimental groups except the CON group whereas Cpt-1 gene was more expressed when OA was administered alone. Together, these results indicated that OA can play a role in glucose and lipid metabolism gene regulation. Furthermore, the results showed that the OA group had ~1.5-fold increase in adiponectin concentration when comparedto the HF group. Moreover, HF increased levels of inflammatory cytokines, which was attenuated by neonatal administration of OA. Plasma concentration and gene expression in the skeletal muscle for TNF-α and IL-6 were significantly increased in rats that were treated with HF alone when compared to all the other groups. On the contrary, the high levels of TNF-α and IL-6 were reduced when OA was administered. These findings suggest that intake of oleanolic acid during the neonatal stage of development could be a potential strategic intervention for the long-term prevention of metabolic diseases such as T2D and obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.