SUMMARY The antiapoptotic protein Bcl-2 inhibits Ca2+ release from the endoplasmic reticulum (ER). One proposed mechanism involves an interaction of Bcl-2 with the inositol 1,4,5-trisphosphate receptor (IP3R) Ca2+ channel localized with Bcl-2 on the ER. Here we document Bcl-2-IP3R interaction within cells by FRET and identify a Bcl-2 interacting region in the regulatory and coupling domain of the IP3R. A peptide based on this IP3R sequence displaced Bcl-2 from the IP3R and reversed Bcl-2-mediated inhibition of IP3R channel activity in vitro, IP3-induced ER Ca2+ release in permeabilized cells, and cell-permeable IP3 ester-induced Ca2+ elevation in intact cells. This peptide also reversed Bcl-2’s inhibition of T cell receptor-induced Ca2+ elevation and apoptosis. Thus, the interaction of Bcl-2 with IP3Rs contributes to the regulation of proapoptotic Ca2+ signals by Bcl-2, suggesting the Bcl-2-IP3R interaction as a potential therapeutic target in diseases associated with Bcl-2’s inhibition of cell death.
Although the presence of a BH4 domain distinguishes the antiapoptotic protein Bcl-2 from its proapoptotic relatives, little is known about its function. BH4 deletion converts Bcl-2 into a proapoptotic protein, whereas a TAT-BH4 fusion peptide inhibits apoptosis and improves survival in models of disease due to accelerated apoptosis. Thus, the BH4 domain has antiapoptotic activity independent of full-length Bcl-2. Here we report that the BH4 domain mediates interaction of Bcl-2 with the inositol 1,4,5-trisphosphate (IP3) receptor, an IP3-gated Ca 2+ channel on the endoplasmic reticulum (ER). BH4 peptide binds to the regulatory and coupling domain of the IP3 receptor and inhibits IP3-dependent channel opening, Ca 2+ release from the ER, and Ca 2+ -mediated apoptosis. A peptide inhibitor of Bcl-2-IP3 receptor interaction prevents these BH4-mediated effects. By inhibiting proapoptotic Ca 2+ signals at their point of origin, the Bcl-2 BH4 domain has the facility to block diverse pathways through which Ca 2+ induces apoptosis.
Increased proinflammatory interleukin-6 (IL-6) levels are associated with acquired long QT-syndrome (LQTS) in patients with systemic inflammation, leading to higher risks for life-threatening polymorphic ventricular tachycardia such as Torsades de Pointes. However, the functional and molecular mechanisms of this association are not known. In most cases of acquired LQTS, the target ion channel is the human ether-á-go-go-related gene (hERG) encoding the rapid component of the delayed rectifier K current, IKr, which plays a critical role in cardiac repolarization. Here, we tested the hypothesis that IL-6 may cause QT prolongation by suppressing IKr. Electrophysiological and biochemical assays were used to assess the impact of IL-6 on the functional expression of IKr in HEK293 cells and adult guinea-pig ventricular myocytes (AGPVM). In HEK293 cells, IL-6 alone or in combination with the soluble IL-6 receptor (IL-6R), produced a significant depression of IKr peak and tail current densities. Block of IL-6R or Janus kinase (JAK) reversed the inhibitory effects of IL-6 on IKr. In AGPVM, IL-6 prolonged action potential duration (APD) which was further prolonged in the presence of IL-6R. Similar to heterologous cells, IL-6 reduced endogenous guinea pig ERG channel mRNA and protein expression. The data are first to demonstrate that IL-6 inhibition of IKr and the resulting prolongation of APD is mediated via IL-6R and JAK pathway activation and forms the basis for the observed clinical QT interval prolongation. These novel findings may guide the development of targeted anti-arrhythmic therapeutic interventions in patients with LQTS and inflammatory disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.