Nonlinear programming problem (NPP) had become an important branch of operations research, and it was the mathematical programming with the objective function or constraints being nonlinear functions. There were a variety of traditional methods to solve nonlinear programming problems such as bisection method, gradient projection method, the penalty function method, feasible direction method, the multiplier method. But these methods had their specific scope and limitations, the objective function and constraint conditions generally had continuous and differentiable request. The traditional optimization methods were difficult to adopt as the optimized object being more complicated. However, in this paper, mathematical programming techniques that are commonly used to extremize nonlinear functions of single and multiple (n) design variables subject to no constraints are been used to overcome the above challenge. Although most structural optimization problems involve constraints that bound the design space, study of the methods of unconstrained optimization is important for several reasons. Steepest Descent and Newton's methods are employed in this paper to solve an optimization problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.