This study investigated 65 (35 in summer and 30 in winter) smallholder dairy cattle feeds from Free State and Limpopo provinces in South Africa from 2018 to 2019 for fungal contamination and assessed the impacts of seasonal variation on fungal contamination levels, isolation frequency, and diversity. Samples were examined for fungal contamination using macro- and microscopic approaches, and their identities were confirmed by molecular means. A total of 217 fungal isolates from 14 genera, including Aspergillus, Fusarium, and Penicillium, were recovered from feeds from both seasons. The most prevalent fungal species recovered were A. fumigatus and P. crustosum. Mycological analyses showed that 97% of samples were contaminated with one or more fungal isolates, with the summer fungal mean level (6.1 × 103 to 3.0 × 106 CFU/g) higher than that of feeds sampled during winter (mean level: 1.1 × 103 to 4.1 × 105 CFU/g). Independent sample t-test revealed that the isolation frequencies of the genera Aspergillus and Fusarium were significantly (p ≤ 0.05) higher in summer than winter, while Penicillium prevalence in both seasons was not statistically (p > 0.05) different. Furthermore, the Shannon–Weiner diversity index (H′) revealed a higher fungal diversity in summer (H′ = 2.8) than in winter (H′ = 2.1). This study on fungal contamination could be used for future fungal control and mycotoxin risk management in South Africa.
Fungal contamination is a threat to food safety in West Africa with implications for food and feed due to their climate, which is characterised by high temperatures and high relative humidity, which are environmental favourable for fast fungal growth and mycotoxin production. This report gives perspective on studies on toxigenic fungi (Aspergillus, Fusarium and Penicillium) and their toxins, mainly aflatoxins, fumonisins and ochratoxins commonly found in some West African countries, including Benin, Burkina Faso, Gambia, Ghana, Ivory Coast, Mali, Nigeria, Senegal, Sierra Leone, and Togo. Only four of these countries have mycotoxins regulations in place for feeds and food products (Ghana, Ivory Coast, Nigeria, and Senegal). Food commodities that are widely consumed and were thoroughly investigated in this region include cereals, peanuts, cassava chips (flakes), cassava flour, chilies, peanuts, locust beans, melon, and yam products. In conclusion, authorities and scientists needed to consider research and approaches to monitor mycotoxins in foods and feeds produced and consumed in West Africa.
This study evaluated the impact of seasonal and geographical variations on the toxigenicity of Aspergillus and Fusarium strains previously isolated from smallholder dairy cattle feeds and feedstuffs sampled during summer and winter in the Free State and Limpopo provinces of South Africa (SA). In total, 112 potential toxigenic fungal species were obtained and determined for their capability to produce mycotoxins on solid Czapek Yeast Extract Agar (CYA); followed by liquid chromatography-mass spectrometry (LC-MS/MS) analysis. Our result revealed that 41.96% of the fungal species produced their respective mycotoxins, including aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), and zearalenone (ZEN), with higher levels of AFB1 (0.22 to 1045.80 µg/kg) and AFB2 (0.11 to 3.44 µg/kg) produced by fungal species isolated from summer samples than those in winter [(0.69 to 14.44 µg/kg) and (0.21 to 2.26 µg/kg), respectively]. The same pattern was also observed for AFB1 and AFB2 in Limpopo (0.43 to 1045.80 µg/kg and 0.13 to 3.44 µg/kg) and Free State (0.22 to 576.14 µg/kg and 0.11 to 2.82 µg/kg), respectively. More so, ZEN concentrations in summer (7.75 to 97.18 µg/kg) were higher than in winter (5.20 to 15.90 µg/kg). A similar observation was also noted for ZEN in Limpopo (7.80 to 97.18 µg/kg) and Free State (5.20 to 15.90 µg/kg). These findings were confirmed via Welch and Brown-Forsythe tests with significantly (p ≤ 0.05) higher mycotoxin levels produced by fungal strains obtained in samples during summer than those in winter. In contrast, the concentrations of mycotoxins produced by the fungal species from both provinces were not significantly (p > 0.05) different.
Background Several metabolites released by fungal species are an essential source of biologically active natural substances. Gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS) is one of the techniques used in profiling the metabolites produced by microorganisms, including Talaromyces pinophilus. However, there is limited information regarding differential substrates’ impacts on this fungal strain’s metabolite profiling. This study examined the metabolite profile of T. pinophilus strain SPJ22 cultured on three different media, including solid czapek yeast extract agar (CYA), malt extract agar (MEA) and potato dextrose agar (PDA) using GC-HRTOF-MS. The mycelia including the media were plugged and dissolved in 5 different organic solvents with varying polarities viz.: acetonitrile, dichloromethane, hexane, 80% methanol and water, and extracts analysed on GC-HRTOF-MS. Results The study revealed the presence of different classes of metabolites, such as fatty acids (2.13%), amides (4.26%), alkanes (34.04%), furan (2.13%), ketones (4.26%), alcohols (14.89%), aromatic compounds (6.38%), and other miscellaneous compounds (17.02%). Significant metabolites such as acetic acid, 9-octadecenamide, undecanoic acid methyl ester, hydrazine, hexadecane, nonadecane, eicosane, and other compounds reported in this study have been widely documented to have plant growth promoting, antimicrobial, anti-inflammatory, antioxidant, and biofuel properties. Furthermore, T. pinophilus grown on PDA and MEA produced more than twice as many compounds as that grown on CYA. Conclusion Thus, our result showed that the production of essential metabolites from T. pinophilus is substrate dependent, with many of these metabolites known to have beneficial characteristics, and as such, this organism can be utilised as a sustainable and natural source for these useful organic molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.