In the past two decades' significant studies have been reported on electrically conducting ther-moplastic composites of acrylonitrile butadiene styrene (ABS), polyvinylidene fluoride (PVDF), etc. for the fabrication of novel energy storage devices (ESD) by 3D printing. But hitherto little has been reported on online condition monitoring of ESD prepared by secondary (2°) recycling of ABS. This study reports the investigations on mechanical and electrical properties of NH4Cl-ZnCl2 (electrolyte) reinforced ABS composite (as 3D printed sensor) for online condition monitoring of ESD. In a typical dry cell, the electrolyte is one of the integral parts, and the change in its dielectric properties with the time/ applied electric load has been used to ascertain the health of ESD (online) as the internet of things (IoT) based solution (Bluetooth application) in industry sports and medicine (ISM) band (2.4 GHz). Based on melt flow index (MFI), 10% NH4Cl and 10% ZnCl2 (by weight%) were reinforced in ABS for preparing 3D printed rectangular substrates as ring resonators for cal-culating dielectric constant (er) and loss tangent/dissipation factor (tand) for the resonant frequency. Trans-mission line parameters (S21) were observed using a vector network analyzer (VNA), and a high-frequency structure simulation (HFSS) software package. The results are supported by morphological analysis of ABS composite based on scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), 3D rendering, surface roughness (Ra), area mapping, current (I)-voltage (V), and Fourier transformed infrared (FTIR) characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.