Delignified lignocellulosic biomass was functionalized with amine groups. Then, the pretreated lignin-free date pits cellulose and the amine-functionalized-date pits cellulose (0–5 wt%) were incorporated into a polysulfone polymer matrix to fabricate composite membranes. The amine groups give additional hydrogen bonding to those existing from the hydroxyl groups in the date pits cellulose. The approach gives an efficient avenue to enhance the CO2 molecules’ transport pathways through the membrane matrix. The interactions between phases were investigated via Fourier transformed infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), whereas pure gases (CO2 and N2) were used to evaluate the gas separation performances. Additionally, the thermal and mechanical properties of the fabricated composites were tested. The pure polysulfone membrane achieved an optimum separation performance at 4 Bar. The optimum separation performance for the composite membranes is achieved at 2 wt%. About 32% and 33% increments of the ideal CO2/N2 selectivity is achieved for the lignin-free date pits cellulose composite membrane and the amine-functionalized-date pits cellulose composite membrane, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.