Summary Background Sustainable Development Goal 3.2 has targeted elimination of preventable child mortality, reduction of neonatal death to less than 12 per 1000 livebirths, and reduction of death of children younger than 5 years to less than 25 per 1000 livebirths, for each country by 2030. To understand current rates, recent trends, and potential trajectories of child mortality for the next decade, we present the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 findings for all-cause mortality and cause-specific mortality in children younger than 5 years of age, with multiple scenarios for child mortality in 2030 that include the consideration of potential effects of COVID-19, and a novel framework for quantifying optimal child survival. Methods We completed all-cause mortality and cause-specific mortality analyses from 204 countries and territories for detailed age groups separately, with aggregated mortality probabilities per 1000 livebirths computed for neonatal mortality rate (NMR) and under-5 mortality rate (U5MR). Scenarios for 2030 represent different potential trajectories, notably including potential effects of the COVID-19 pandemic and the potential impact of improvements preferentially targeting neonatal survival. Optimal child survival metrics were developed by age, sex, and cause of death across all GBD location-years. The first metric is a global optimum and is based on the lowest observed mortality, and the second is a survival potential frontier that is based on stochastic frontier analysis of observed mortality and Healthcare Access and Quality Index. Findings Global U5MR decreased from 71·2 deaths per 1000 livebirths (95% uncertainty interval [UI] 68·3–74·0) in 2000 to 37·1 (33·2–41·7) in 2019 while global NMR correspondingly declined more slowly from 28·0 deaths per 1000 live births (26·8–29·5) in 2000 to 17·9 (16·3–19·8) in 2019. In 2019, 136 (67%) of 204 countries had a U5MR at or below the SDG 3.2 threshold and 133 (65%) had an NMR at or below the SDG 3.2 threshold, and the reference scenario suggests that by 2030, 154 (75%) of all countries could meet the U5MR targets, and 139 (68%) could meet the NMR targets. Deaths of children younger than 5 years totalled 9·65 million (95% UI 9·05–10·30) in 2000 and 5·05 million (4·27–6·02) in 2019, with the neonatal fraction of these deaths increasing from 39% (3·76 million [95% UI 3·53–4·02]) in 2000 to 48% (2·42 million; 2·06–2·86) in 2019. NMR and U5MR were generally higher in males than in females, although there was no statistically significant difference at the global level. Neonatal disorders remained the leading cause of death in children younger than 5 years in 2019, followed by lower respiratory infections, diarrhoeal diseases, congenital birth defects, and malaria. The global optimum analysis suggests NMR could be reduced to as low as 0·80 (95% UI 0·71–0·86) deaths per 1000 livebirths and U5MR to 1·44 (95% UI 1·27–1·58) deaths per 1...
Background Human immunodeficiency virus (HIV) remains a public health priority in Latin America. While the burden of HIV is historically concentrated in urban areas and high-risk groups, subnational estimates that cover multiple countries and years are missing. This paucity is partially due to incomplete vital registration (VR) systems and statistical challenges related to estimating mortality rates in areas with low numbers of HIV deaths. In this analysis, we address this gap and provide novel estimates of the HIV mortality rate and the number of HIV deaths by age group, sex, and municipality in Brazil, Colombia, Costa Rica, Ecuador, Guatemala, and Mexico. Methods We performed an ecological study using VR data ranging from 2000 to 2017, dependent on individual country data availability. We modeled HIV mortality using a Bayesian spatially explicit mixed-effects regression model that incorporates prior information on VR completeness. We calibrated our results to the Global Burden of Disease Study 2017. Results All countries displayed over a 40-fold difference in HIV mortality between municipalities with the highest and lowest age-standardized HIV mortality rate in the last year of study for men, and over a 20-fold difference for women. Despite decreases in national HIV mortality in all countries—apart from Ecuador—across the period of study, we found broad variation in relative changes in HIV mortality at the municipality level and increasing relative inequality over time in all countries. In all six countries included in this analysis, 50% or more HIV deaths were concentrated in fewer than 10% of municipalities in the latest year of study. In addition, national age patterns reflected shifts in mortality to older age groups—the median age group among decedents ranged from 30 to 45 years of age at the municipality level in Brazil, Colombia, and Mexico in 2017. Conclusions Our subnational estimates of HIV mortality revealed significant spatial variation and diverging local trends in HIV mortality over time and by age. This analysis provides a framework for incorporating data and uncertainty from incomplete VR systems and can help guide more geographically precise public health intervention to support HIV-related care and reduce HIV-related deaths.
Summary Background High-resolution estimates of HIV burden across space and time provide an important tool for tracking and monitoring the progress of prevention and control efforts and assist with improving the precision and efficiency of targeting efforts. We aimed to assess HIV incidence and HIV mortality for all second-level administrative units across sub-Saharan Africa. Methods In this modelling study, we developed a framework that used the geographically specific HIV prevalence data collected in seroprevalence surveys and antenatal care clinics to train a model that estimates HIV incidence and mortality among individuals aged 15–49 years. We used a model-based geostatistical framework to estimate HIV prevalence at the second administrative level in 44 countries in sub-Saharan Africa for 2000–18 and sought data on the number of individuals on antiretroviral therapy (ART) by second-level administrative unit. We then modified the Estimation and Projection Package (EPP) to use these HIV prevalence and treatment estimates to estimate HIV incidence and mortality by second-level administrative unit. Findings The estimates suggest substantial variation in HIV incidence and mortality rates both between and within countries in sub-Saharan Africa, with 15 countries having a ten-times or greater difference in estimated HIV incidence between the second-level administrative units with the lowest and highest estimated incidence levels. Across all 44 countries in 2018, HIV incidence ranged from 2·8 (95% uncertainty interval 2·1–3·8) in Mauritania to 1585·9 (1369·4–1824·8) cases per 100 000 people in Lesotho and HIV mortality ranged from 0·8 (0·7–0·9) in Mauritania to 676·5 (513·6–888·0) deaths per 100 000 people in Lesotho. Variation in both incidence and mortality was substantially greater at the subnational level than at the national level and the highest estimated rates were accordingly higher. Among second-level administrative units, Guijá District, Gaza Province, Mozambique, had the highest estimated HIV incidence (4661·7 [2544·8–8120·3]) cases per 100 000 people in 2018 and Inhassunge District, Zambezia Province, Mozambique, had the highest estimated HIV mortality rate (1163·0 [679·0–1866·8]) deaths per 100 000 people. Further, the rate of reduction in HIV incidence and mortality from 2000 to 2018, as well as the ratio of new infections to the number of people living with HIV was highly variable. Although most second-level administrative units had declines in the number of new cases (3316 [81·1%] of 4087 units) and number of deaths (3325 [81·4%]), nearly all appeared well short of the targeted 75% reduction in new cases and deaths between 2010 and 2020. Interpretation Our estimates suggest that most second-level administrative units in sub-Saharan Africa are falling short of the targeted 75% reduction in new cases and deaths by 2020, which is further compounded by substantial within-country variability...
ObjectivesTo explore the efficacy of machine learning (ML) techniques in predicting under-five mortality (U5M) in low-income and middle-income countries (LMICs) and to identify significant predictors of U5M.DesignThis is a cross-sectional, proof-of-concept study.Settings and participantsWe analysed data from the Demographic and Health Survey. The data were drawn from 34 LMICs, comprising a total of n=1 520 018 children drawn from 956 995 unique households.Primary and secondary outcome measuresThe primary outcome measure was U5M; secondary outcome was comparing the efficacy of deep learning algorithms: deep neural network (DNN); convolution neural network (CNN); hybrid CNN-DNN with logistic regression (LR) for the prediction of child’s survival.ResultsWe found that duration of breast feeding, number of antenatal visits, household wealth index, postnatal care and the level of maternal education are some of the most important predictors of U5M. We found that deep learning techniques are superior to LR for the classification of child survival: LR sensitivity=0.47, specificity=0.53; DNN sensitivity=0.69, specificity=0.83; CNN sensitivity=0.68, specificity=0.83; CNN-DNN sensitivity=0.71, specificity=0.83.ConclusionOur findings provide an understanding of determinants of U5M in LMICs. It also demonstrates that deep learning models are more efficacious than traditional analytical approach.
Background:The Australian Dental Council's (ADC) competency framework requires graduating dental practitioners to be competent in a number of transferable skills, which includes: being scientifically versed, technically skilled and capable of safe independent work and teamwork, whilst adhering to high ethical standards (Australian Dental Council.Professional Competencies of the Newly Qualified Dentist. Melbourne, Australia: ADC; 2016). Part of the role of dental educators is to ensure graduating students acquire requisite transferable skills, in line with regulatory requirements (Chuenjitwongsa et al. Eur J Dent Educ. 2018;22:1). In order to achieve this, it is imperative to assess students' own understanding or perception of transferable skill requirement upon graduation. The objective of this study was to develop a valid and reliable scale for this assessment.Method: A cohort of students drawn across three different dental programmes: undergraduate dentistry (years 1-3); post-graduate dentistry (years 4-5); and Bachelor of Dental Technology/Prosthesis, participated in this study. A self-assessment questionnaire containing relevant open-and closed-ended questions was administered.The questionnaire assessed students' perception of transferable skills for their future career and attitude towards learning and developing transferable skills. Result:In total, we successfully assessed 388 of the 391 students sampled (99.2% response rate), their mean age was 24.3 years (SD ± 5.7), and 53.3% were females, whilst 46.7% were males. Overall, exploratory factor analysis (EFA) extracted five factors for students' perception of current skill level, and four factors for future skill requirements. The factor structures were confirmed using confirmatory factor analysis (CFA), and the structure had a good model fit and high levels of reliability, with respect to individual dimension and content validity. Conclusions:The structure derived from the transferable skill survey administered to a cohort of dental students suggests that the transferable skill survey can be utilised as a valid and reliable screening tool to test students' perception of transferable skill requirements. K E Y W O R D Scompetency, dental students, self-assessment, transferable skills
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.