Drought forecasting and prediction is a complicated process due to the complexity and scalability of the environmental parameters involved. Hence, it required a high level of expertise to predict. In this paper, we describe the research and development of a rule-based drought early warning expert systems (RB-DEWES) for forecasting drought using local indigenous knowledge obtained from domain experts. The system generates inference by using rule set and provides drought advisory information with attributed certainty factor (CF) based on the user's input. The system is believed to be the first expert system for drought forecasting to use local indigenous knowledge on drought. The architecture and components such as knowledge base, JESS inference engine and model base of the system and their functions are presented. Keywords-Expert system; drought forecasting; knowledgebased system; indigenous knowledge; rule-based expert systems.
In the Internet of Things (IoT) domain, various heterogeneous ubiquitous devices would be able to connect and communicate with each other seamlessly, irrespective of the domain. Semantic representation of data through detailed standardized annotation has shown to improve the integration of the interconnected heterogeneous devices. However, the semantic representation of these heterogeneous data sources for environmental monitoring systems is not yet well supported. To achieve the maximum benefits of IoT for drought forecasting, a dedicated semantic middleware solution is required. This research proposes a middleware that semantically represents and integrates heterogeneous data sources with indigenous knowledge based on a unified ontology for an accurate IoT-based drought early warning system (DEWS).
In recent years, the application and wide adoption of Internet of Things (IoT)-based technologies have increased the proliferation of monitoring systems, which has consequently exponentially increased the amounts of heterogeneous data generated. Processing and analysing the massive amount of data produced is cumbersome and gradually moving from classical ‘batch’ processing—extract, transform, load (ETL) technique to real-time processing. For instance, in environmental monitoring and management domain, time-series data and historical dataset are crucial for prediction models. However, the environmental monitoring domain still utilises legacy systems, which complicates the real-time analysis of the essential data, integration with big data platforms and reliance on batch processing. Herein, as a solution, a distributed stream processing middleware framework for real-time analysis of heterogeneous environmental monitoring and management data is presented and tested on a cluster using open source technologies in a big data environment. The system ingests datasets from legacy systems and sensor data from heterogeneous automated weather systems irrespective of the data types to Apache Kafka topics using Kafka Connect APIs for processing by the Kafka streaming processing engine. The stream processing engine executes the predictive numerical models and algorithms represented in event processing (EP) languages for real-time analysis of the data streams. To prove the feasibility of the proposed framework, we implemented the system using a case study scenario of drought prediction and forecasting based on the Effective Drought Index (EDI) model. Firstly, we transform the predictive model into a form that could be executed by the streaming engine for real-time computing. Secondly, the model is applied to the ingested data streams and datasets to predict drought through persistent querying of the infinite streams to detect anomalies. As a conclusion of this study, a performance evaluation of the distributed stream processing middleware infrastructure is calculated to determine the real-time effectiveness of the framework.
Abstract. Technological advancement in Wireless Sensor Networks (WSN) has made it become an invaluable component of a reliable environmental monitoring system; they form the 'digital skin' through which to 'sense' and collect the context of the surroundings and provides information on the process leading to complex events such as drought. However, these environmental properties are measured by various heterogeneous sensors of different modalities in distributed locations making up the WSN, using different abstruse terms and vocabulary in most cases to denote the same observed property, causing data heterogeneity. Adding semantics and understanding the relationships that exist between the observed properties, and augmenting it with local indigenous knowledge is necessary for an accurate drought forecasting system. In this paper, we propose the framework for the semantic representation of sensor data and integration with indigenous knowledge on drought using a middleware for an efficient drought forecasting system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.