Oil–water separation using porous superhydrophilic materials is a promising method to circumvent the issue of oil-polluted water by separating water from oil–water mixtures.
Preparing underwater superoleophobic surface is an effective method to solve the problems of oil adhesion on the underwater surfaces and oil spill in water. However, the underwater superoleophobic surfaces at present are not reliable in practical application due to their poor stability under corrosion and abrasion. Herein, we proposed a facile method to fabricate a robust superhydrophilic/underwater superoleophobic surface. The surface is combined with micro honeycomb frame structure and nanostructure, which was fabricated by laser ablation. The surface with the honeycomb pattern shows strong hydrophilicity with a water contact angle of 0° and stable underwater oil repellency with an underwater oil contact angle of 164.9°. Furthermore, it can maintain its excellent underwater superoleophobic performance after 120 cycles of abrasion and corrosion of 6 h at pH = 1–14.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.