A wide-slot ultra-wideband (UWB) antenna with on-demand band rejection characteristics that can serve underlay cognitive radio is presented in this paper. This antenna is designed to work in twelve operation modes; one to cover the whole UWB while each of the rest modes excludes one or more of the ranges that are allocated for Worldwide Interoperability for Microwave Access (WiMax), C-band, wireless local area network (WLAN), X-band and International Telecommunication Union (ITU) in a single, dual, triple, quad or penta band rejection state. A spiral shape slot in the patch and three slots mainly based on half-circular structures in the ground plane are the means to create the desired frequency notches. A positive-intrinsic-negative (PIN) diode across each of these slots is used to enable/disable band(s) rejection process. Configuration of the proposed antenna to the desired mode of operation is decided by the state of its four PIN diodes. This work is simulated by computer simulation technology (CST) v.10. It’s S11, voltage-standing-wave-ratio (VSWR) and realized gain results when combined with antenna's 25x25x0.8 mm3 compact size and the large number of modes and states, all ensure its capability to eliminate or reduce the interference within the targeted bands and hence being suitable for the applications of underlay cognitive radio.
Multipath environment is a limitation fact in optimized usage of wireless networks. Using smart antenna and beamforming algorithms contributed to that subscribers get a higher-gain signal and better directivity as well as reduce the consumed power for users and the mobile base stations by adjusting the appropriate weights for each element in the antenna array that leads to reducing interference and directing the main beam to wanted user. In this paper, the performance of three of beamforming algorithms in multipath environment in terms of Directivity and side lobe level reduction has been studied and compared, which are least mean square (LMS), genetic algorithm (GA) and grey wolf optimization (GWO) technique. The simulation result appears that LMS algorithm aids us to get the best directivity followed by the GWO, and we may get most sidelobe level reduction by using the GA algorithm, followed by LMS algorithm in second rank.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.