Epoxy-trimetallic oxide (epoxy-TMO) coatings of ZrO2:TiO2:ZnO at different compositions were synthesized and used to protect a stainless steel surface. The different TMO compositions were synthesized using the ball-milling method and later dispersed on the polymer matrix. The different characterizations performed on these coatings showed that the epoxy-TMO coating with a ratio of 50:40:10 (wt%) exhibited the highest corrosion resistance, in the order of ~1012 Ωcm2, due to the barrier effect of the distributed particles after 28 days in an aggressive environment (3.5 wt% NaCl solution). The influence of the metal oxides in forming a semiconductor layer produces a capacitor-like behavior, influencing corrosion control via a mass transfer mechanism barrier. The water uptake reveals the effect of each metal oxide in the formation of a physical barrier due to the dispersion mechanism, as well as how the particles function within the polymer matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.