An ethylene-inducing xylanase (EIX) is a potent elicitor of plant defense responses in specific cultivars of tobacco (Nicotiana tabacum) and tomato (Lycopersicon esculentum). The LeEix locus in tomatoes was characterized by map-based cloning, which led to the identification of a novel gene cluster from which two members (LeEix1 and LeEix2) were isolated. Similar to the tomato Ve resistance genes in tomato plants, the deduced amino acid sequences encoded by LeEix1 and LeEix2 contain a Leu zipper, an extracellular Leu-rich repeat domain with glycosylation signals, a transmembrane domain, and a C-terminal domain with a mammalian endocytosis signal. Silencing expression of the LeEix genes prevented the binding of EIX to cells of an EIX-responsive plant and thus inhibited the hypersensitive response. Overexpression of either LeEix1 or LeEix2 genes in EIX-nonresponsive tobacco plants enabled the binding of EIX, although only LeEix2 could transmit the signal that induced the hypersensitive response. Overexpressing LeEix2 in mammalian COS-7 cells enables binding of EIX, indicating physical interaction between the EIX elicitor and LeEix2 gene product. Structural analysis of the LeEix proteins suggests that they belong to a class of cell-surface glycoproteins with a signal for receptor-mediated endocytosis. Mutating the endocytosis signal in LeEix2 (Tyr 993 to Ala) abolished its ability to induce the hypersensitive response, suggesting that endocytosis plays a key role in the signal transduction pathway
SUMMARYPlants are constantly being challenged by aspiring pathogens. In order to protect themselves, plants have developed numerous defense mechanisms that are either specific or non-specific to the pathogen. Pattern recognition receptors can trigger plant defense responses in response to specific ligands or patterns. EIX (ethylene-inducing xylanase) triggers a defense response via the LeEix2 receptor, while bacterial flagellin triggers plant innate immunity via the FLS2 receptor. Endocytosis has been suggested to be crucial for the process in both cases. Here we show that the EIX elicitor triggers internalization of the LeEix2 receptor. Treatment with endocytosis, actin or microtubule inhibitors greatly reduced the internalization of LeEix2. Additionally, we demonstrate that plant EHD2 binds to LeEix2 and is an important factor in its internalization and in regulation of the induction of defense responses such as the hypersensitive response, ethylene biosynthesis and induction of pathogenesis-related protein expression in the case of EIX/LeEix2 (an LRR receptor lacking a kinase domain), but does not appear to be involved in the FLS2 system (an LRR receptor possessing a kinase domain). Our results suggest that various endocytosis pathways are involved in the induction of plant defense responses.
SUMMARYElicitor recognition plays a key role in the reaction of plants to pathogens and the induction of plant defense responses. Furthermore, plant-microbe interactions involve numerous regulatory systems essential for plant defense against pathogens. Ethylene-inducing xylanase (Eix) is a potent elicitor of plant defense responses in specific cultivars of tobacco (Nicotiana tabacum) and tomato (Solanum lycopersicum). The Eix receptors (LeEix1 and LeEix2) belong to a superclade of leucine-rich repeat receptor-like proteins (RLP) with a signal for receptor-mediated endocytosis, which was shown to be essential for proper induction of defense responses. Both receptors are able to bind Eix, while only LeEix2 mediates defense responses. Here we demonstrate that LeEix1 heterodimerizes with LeEix2 upon application of the Eix elicitor. We show that LeEix1 attenuates Eix-induced internalization and signaling of the LeEix2 receptor. Furthermore, we demonstrate, using yeast two-hybrid and in planta bimolecular fluorescence complementation assays, that the brassinosteroid co-receptor, BAK1, binds LeEix1 but not LeEix2. In BAK1-silenced plants, LeEix1 was no longer able to attenuate plant responses to Eix, indicating that BAK1 is required for this attenuation. We suggest that LeEix1 functions as a decoy receptor for LeEix2, a function which requires BAK1.
The ROF2 (FKBP65) is a heat stress protein which belongs to the FK506 Binding Protein (FKBP) family. It is homologous to ROF1 (FKBP62) which was recently shown to be involved in long term acquired thermotolerance by its interaction with HSP90.1 and modulation of the heat shock transcription factor HsfA2. In this study, we have demonstrated that ROF2 participates in long term acquired thermolerance, its mode of action being different from ROF1. In the absence of ROF2, the small heat shock proteins were highly expressed and the plants were resistant to heat stress, opposite to the effect observed in the absence of ROF1. It was further demonstrated that ROF2 transcription is modulated by HsfA2 which is also essential for keeping high levels of ROF2 during recovery from heat stress. ROF2 localization to the nucleus was observed several hours after heat stress exposure and its translocation to the nucleus was independent from the presence of HSP90.1 or HsfA2. ROF2 has been shown to interact with ROF1, to form heterodimers and it is suggested that via this interaction it can join the complex ROF1-HSP90.1- HsfA2. Transient expression of ROF2 together with ROF1 repressed transcription of small HSPs. A model describing the mode of action of ROF2 as a heat stress modulator which functions in negative feedback regulation of HsfA2 is proposed.
Phylogenetic analyses of 16S rRNA sequences of sponge-associated cyanobacteria showed them to be polyphyletic, implying that they derived from multiple independent symbiotic events. Most of the symbiont sequences were affiliated to a group of Synechococcus and Prochlorococcus species. However, other symbionts were related to different groups, such as the Oscillatoriales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.