Nitrogen, although abundant in the atmosphere, is paradoxically a limited resource for multicellular organisms. In the Animalia, biological nitrogen fixation has solely been demonstrated in termites. We found that all individuals of field-collected Mediterranean fruit flies (Ceratitis capitata) harbour large diazotrophic enterobacterial populations that express dinitrogen reductase in the gut. Moreover, nitrogen fixation was demonstrated in isolated guts and in live flies and may significantly contribute to the fly's nitrogen intake. The presence of similar bacterial consortia in additional insect orders suggests that nitrogen fixation occurs in vast pools of terrestrial insects. On such a large scale, this phenomenon may have a considerable impact on the nitrogen cycle.
Female Mediterranean fruit flies (Ceratitis capitata) oviposit in fruits, within which the larvae develop. This development is associated with rapid deterioration of the fruit, and frequently with invasion by secondary pests. Most research on the associations between medflies and microorganisms has focused on the bacteria inhabiting the digestive system of the adult fly, while the role of the fruit in mediating, amplifying or regulating the fruit fly microflora has been largely neglected. In this study, we examine the hypothesis that the host fruit plays a role in perpetuating the fly-associated bacterial community. Using direct and cultured-based approaches, we show that this community is composed in its very large majority of diazotrophic and pectinolytic Enterobacteriaceae. Our data suggest that this fly-associated enterobacterial community is vertically transmitted from the female parent to its offspring. During oviposition, bacteria are transferred to the fruit, establish and proliferate within it, causing its decay. These results show that the host fruit is indeed a central partner in the fruit fly-bacterial interaction as these transmitted bacteria are amplified by the fruit, and subsequently maintained throughout the fly's life. This enterobacterial community may contribute to the fly's nitrogen and carbon metabolism, affecting its development and ultimately, fitness.
The Mediterranean fruit fly (medfly) (Ceratitis capitata) lays eggs in fruits, where larvae subsequently develop, causing largescale agricultural damage. Within its digestive tract, the fly supports an extended bacterial community that is composed of multiple strains of a variety of enterobacterial species. Most of these bacteria appear to be functionally redundant, with most strains sustaining diazotrophy and/or pectinolysis. At least some of these bacteria were shown to be vertically inherited, but colonization, structural, and metabolic aspects of the community's dynamics have not been investigated. We used fluorescent in situ hybridization, metabolic profiling, plate cultures, and pyrosequencing to show that an initial, egg-borne, diverse community expands throughout the fly's life cycle. While keeping "core" diazotrophic and pectinolytic functions, it also harbors diverse and fluctuating populations that express varied metabolic capabilities. We suggest that the metabolic and compositional plasticity of the fly's microbiota provides potential adaptive advantages to the medfly host and that its acquisition and dynamics are affected by mixed processes that include stochastic effects, host behavior, and molecular barriers.
Obligatory hematophagous arthropods such as lice, bugs, flies, and ticks harbor bacterial endosymbionts that are expected to complement missing essential nutrients in their diet. Genomic and some experimental evidence support this expectation. Hard ticks (Acari: Ixodidae) are associated with several lineages of bacterial symbionts, and very few were experimentally shown to be essential to some aspects of tick's fitness. In order to pinpoint the nature of interactions between hard ticks and their symbionts, we tested the effect of massive elimination of Coxiella-like endosymbionts (CLE) by antibiotics on the development and fitness of the brown dog tick (Rhipicephalus sanguineus). Administration of ofloxacin to engorged (blood fed) nymphs resulted in significant and acute reduction of their CLE loads-an effect that also persisted in subsequent life stages (aposymbiotic ticks). As a result, the post-feeding development of aposymbiotic female (but not male) nymphs was delayed. Additionally, aposymbiotic adult females needed a significantly prolonged feeding period in order to replete (detach from host), and had reduced engorgement weight and a lower capacity to produce eggs. Consequently, their fecundity and fertility were significantly reduced. Eggs produced by aposymbiotic females were free of CLE, and the resulting aposymbiotic larvae were unable to feed successfully. Our findings demonstrate that the observed fitness effects are due to CLE reduction and not due to antibiotic administration. Additionally, we suggest that the contribution of CLE is not mandatory for oocyte development and embryogenesis, but is required during feeding in females, when blood meal processing and tissue buildup are taking place. Presumably, under these extreme physiological demands, CLE contribute to R. sanguineus through supplementing essential micro-and macronutrients. Further nutrient complementary studies are required to support this hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.